Что такое метаболизм в биологии. Обмен веществ общее понятие об обмене веществ. Метаболизм минеральных веществ

11 311

Термин «метаболизм » (обмен веществ) в переводе с греческого языка означает «изменение» или «преобразование». Итак, что же преобразуется?

Метаболизм – это совокупность всех биохимических и энергетических процессов в организме, в ходе которых поступившая пища, вода, воздух преобразуются в энергию и ряд веществ, необходимых для поддержания жизнедеятельности. Это функция позволяет нашему организму использовать еду и другие ресурсы для поддержания своей структуры, восстановления повреждений, избавления от токсинов, размножения. Другими словами, метаболизм является необходимым процессом, без которого живые организмы погибнут.

Функции метаболизма:

  1. поддержание постоянства внутренней среды организма в непрерывно меняющихся условиях существования и адаптация к изменениям внешних условий.
  2. обеспечение жизнедеятельности, развития и самовоспроизведения.

Метаболизм начинается с поглощения питательных веществ, необходимых для поддержания жизни. Но поглощаем-то мы чужие белки, жиры и углеводы! А построить надо свои. Что для этого нужно сделать? Правильно! Расщепить поступившие сложные вещества на более простые составляющие, а затем из них построить индивидуальные белки, жиры и углеводы. То есть надо сначала разобрать, а потом построить.

Поэтому весь процесс метаболизма можно разделить на 2 тесно связанные между собой составляющие, две части одного процесса – обмена веществ.

1. Катаболизм – это такие процессы в организме, которые направлены на расщепление пищевых, а также собственных молекул на более простые вещества с освобождением при этом энергии и запасание ее в форме аденозинтрифосфата (АТФ).
Первый этап катаболизма – это процесс пищеварения, в ходе которого белки расщепляются до аминокислот, углеводы — до глюкозы, липиды — до глицерина и жирных кислот. Затем уже в клетках эти молекулы превращается в ещё более мелкие, к примеру, жирные кислоты – в ацетил-КоА, глюкоза — в пируват, аминокислоты — в оксалоацетат, фумарат и сукцинат и т.д. Основные конечные продукты катаболизма — вода, углекислый газ, аммиак, мочевина.

Разрушение сложных веществ необходимо для экстренных нужд получения энергии и построения новых тканей. Без процессов катаболизма организм остался бы без энергии, а значит, не мог бы существовать. Ведь эта энергия в последующем будет направлена на синтез необходимых веществ, создание тканей и обновление организма, то есть на анаболизм . Энергия также необходима для сокращения мышц, передачи нервных импульсов, поддержания температуры тела и др.

2. Анаболизм – это такие обменные процессы в организме, которые направлены на образование клеток и тканей этого организма. Многие вещества, полученные в результате катаболизма, в дальнейшем используются организмом для синтеза (анаболизма) других веществ.
Анаболические процессы всегда протекают с поглощением энергии АТФ. В ходе анаболического метаболизма из более мелких молекул структурируются крупные, из более простых структур образуются более сложные.
Таким образом, в результате катаболизма и последующего анаболизма из питательных веществ, поступающих в организм, строятся белки, жиры и углеводы, свойственные данному организму.

Таблица 1. Сравнение анаболизма и катаболизма.

Несмотря на противоположность анаболизма и катаболизма, они неразрывно связаны и не могут протекать друг без друга.
Совокупность процессов анаболизма и катаболизма – это и есть обмен веществ, или метаболизм .
Сбалансированность этих двух составляющих регулируется гормонами и делает работу организма слаженной. Ферменты при этом играют роль катализаторов в процессах метаболизма.

Как измеряется уровень метаболизма? Что такое скорость метаболизма ?

Измеряя уровень метаболизма, никто, конечно, не подсчитывает количество вновь образовавшихся или разрушившихся клеток или тканей.
Уровень обмена веществ измеряется по количеству поглощенной и выделенной энергии. Речь идёт о той энергии, которая поступает в организм с пищей, и той, которую расходует человек в процессе жизнедеятельности. Измеряется она в калориях.
Калории для организма – это как бензин для автомобиля. Это источник энергии, благодаря которому бьется сердце, сокращаются мышцы, функционирует мозг, человек дышит.

Когда говорят «повышенный или пониженный обмен веществ», имеется в виду повышенная или пониженная скорость (или интенсивность) обмена.

Скорость метаболизма — это расход организмом энергии в калориях за определённый период времени.

Сколько калорий в сутки тратит здоровый человек?
Энергия, которую человек тратит в процессе жизнедеятельности, включают в себя 3 составляющие:
1) Энергия, которая расходуется на основной обмен (это и есть основной показатель метаболизма) +
2) Энергия, расходуемая на усвоение пищи — специфическое динамическое действие пищи (СДДП) +
3) Энергия, которая расходуется на физические нагрузки.

Но когда речь идёт об индивидуальном повышенном или пониженном обмене веществ, имеется в виду именно основной обмен .

Основной обмен — что это такое?

Основной обмен – это минимальное количество энергии, которое необходимо организму для поддержания его нормальной жизнедеятельности в условиях полного покоя через 12 часов после приема пищи в состоянии бодрствования и при исключении влияния всех внешних и внутренних факторов.
Эта энергия расходуется на поддержание температуры тела, циркуляцию крови, дыхание, выделение, работу эндокринной системы, функционирование нервной системы, процессы клеточного метаболизма.
Основной обмен показывает насколько интенсивно протекает обмен веществ и энергии в организме.
Основной обмен зависит от пола, веса, возраста, состояния внутренних органов, влияния внешних факторов на организм (недостаток или избыток питания, интенсивность физических нагрузок, климат и т.п.)
Основной обмен может увеличиваться или уменьшаться при воздействии внешних или внутренних факторов. Так понижение внешней температуры увеличивает основной обмен . Повышение внешней температуры снижает основной обмен .

Почему важно знать основной обмен ?

Т.к. основной обмен является показателем интенсивности обмена веществ и энергии в организме, то его изменения могут свидетельствовать о наличии определённых заболеваний.
Для этого сравнивается «должный основной обмен » с «фактическим основным обменом».

Должный основной обмен — это средний показатель, который был установлен на основании результатов обследования большого числа здоровых людей. Его принято считать за норму.
По этим результатам составлены специальные таблицы, в которых указан должный основной обмен с учетом пола, возраста и веса.
Должный основной обмен принят за 100%. Измеряется он в ккал за 24 ч.
Должный основной обмен здорового взрослого человека равен примерно 1 ккал на 1 кг массы тела в 1 час.

Фактический основной обмен — это индивидуальный основной обмен отдельного человека. Он выражается величиной в процентах отклонения от должного. Если фактический основной обмен повышен — со знаком плюс, если понижен — со знаком минус.

Допустимым считается отклонение от должной величины на +15 или -15%.
Отклонения от +15% до +30% считаются сомнительными, при которых необходимо наблюдение и контроль.
Отклонения от +30% до +50% считаются отклонениями средней тяжести, от +50% до +70% — тяжелыми, а более +70% — очень тяжелыми.
Снижение основного обмена на 30-40% также считаются такими, которые связаны с заболеванием, при котором требуется лечение этого заболевания.

Фактический основной обмен определяют методом калориметрии в специальных лабораториях.

Содержание статьи

МЕТАБОЛИЗМ, или обмен веществ, химические превращения, протекающие от момента поступления питательных веществ в живой организм до момента, когда конечные продукты этих превращений выделяются во внешнюю среду. К метаболизму относятся все реакции, в результате которых строятся структурные элементы клеток и тканей, и процессы, в которых из содержащихся в клетках веществ извлекается энергия. Иногда для удобства рассматривают по отдельности две стороны метаболизма – анаболизм и катаболизм, т.е. процессы созидания органических веществ и процессы их разрушения. Анаболические процессы обычно связаны с затратой энергии и приводят к образованию сложных молекул из более простых, катаболические же сопровождаются высвобождением энергии и заканчиваются образованием таких конечных продуктов (отходов) метаболизма, как мочевина, диоксид углерода, аммиак и вода.

Термин «обмен веществ» вошел в повседневную жизнь с тех пор, как врачи стали связывать избыточный или недостаточный вес, чрезмерную нервозность или, наоборот, вялость больного с повышенным или пониженным обменом. Для суждения об интенсивности метаболизма ставят тест на «основной обмен». Основной обмен – это показатель способности организма вырабатывать энергию. Тест проводят натощак в состоянии покоя; измеряют поглощение кислорода (О 2) и выделение диоксида углерода (СО 2). Сопоставляя эти величины, определяют, насколько полно организм использует («сжигает») питательные вещества. На интенсивность метаболизма влияют гормоны щитовидной железы, поэтому врачи при диагностике заболеваний, связанных с нарушениями обмена, в последнее время все чаще измеряют уровень этих гормонов в крови.

Методы исследования.

При изучении метаболизма какого-нибудь одного из питательных веществ прослеживают все его превращения от той формы, в какой оно поступает в организм, до конечных продуктов, выводимых из организма. В таких исследованиях применяется крайне разнообразный набор биохимических методов.

Использование интактных животных или органов.

Животному вводят изучаемое соединение, а затем в его моче и экскрементах определяют возможные продукты превращений (метаболиты) этого вещества. Более определенную информацию можно получить, исследуя метаболизм определенного органа, например печени или мозга. В этих случаях вещество вводят в соответствующий кровеносный сосуд, а метаболиты определяют в крови, оттекающей от данного органа.

Поскольку такого рода процедуры сопряжены с большими трудностями, часто для исследования используют тонкие срезы органов. Их инкубируют при комнатной температуре или при температуре тела в растворах с добавкой того вещества, метаболизм которого изучают. Клетки в таких препаратах не повреждены, и так как срезы очень тонкие, вещество легко проникает в клетки и легко выходит из них. Иногда затруднения возникают из-за слишком медленного прохождения вещества сквозь клеточные мембраны. В этих случаях ткани измельчают, чтобы разрушить мембраны, и с изучаемым веществом инкубируют клеточную кашицу. Именно в таких опытах было показано, что все живые клетки окисляют глюкозу до СО 2 и воды и что только ткань печени способна синтезировать мочевину.

Использование клеток.

Даже клетки представляют собой очень сложно организованные системы. В них имеется ядро, а в окружающей его цитоплазме находятся более мелкие тельца, т.н. органеллы, различных размеров и консистенции. С помощью соответствующей методики ткань можно «гомогенизировать», а затем подвергнуть дифференциальному центрифугированию (разделению) и получить препараты, содержащие только митохондрии, только микросомы или прозрачную жидкость – цитоплазму. Эти препараты можно по отдельности инкубировать с тем соединением, метаболизм которого изучается, и таким путем установить, какие именно субклеточные структуры участвуют в его последовательных превращениях. Известны случаи, когда начальная реакция протекает в цитоплазме, ее продукт подвергается превращению в микросомах, а продукт этого превращения вступает в новую реакцию уже в митохондриях. Инкубация изучаемого вещества с живыми клетками или с гомогенатом ткани обычно не выявляет отдельные этапы его метаболизма, и только последовательные эксперименты, в которых для инкубации используются те или иные субклеточные структуры, позволяют понять всю цепочку событий.

Использование радиоактивных изотопов.

Для изучения метаболизма какого-либо вещества необходимы: 1) соответствующие аналитические методы для определения этого вещества и его метаболитов; и 2) методы, позволяющие отличать добавленное вещество от того же вещества, уже присутствующего в данном биологическом препарате. Эти требования служили главным препятствием при изучении метаболизма до тех пор, пока не были открыты радиоактивные изотопы элементов и в первую очередь радиоактивный углерод 14 C. С появлением соединений, «меченных» 14 C, а также приборов для измерения слабой радиоактивности эти трудности были преодолены. Если к биологическому препарату, например к суспензии митохондрий, добавляют меченную 14 C жирную кислоту, то никаких специальных анализов для определения продуктов ее превращений не требуется; чтобы оценить скорость ее использования, достаточно просто измерять радиоактивность последовательно получаемых митохондриальных фракций. Эта же методика позволяет легко отличать молекулы радиоактивной жирной кислоты, введенной экспериментатором, от молекул жирной кислоты, уже присутствовавших в митохондриях к началу эксперимента.

Хроматография и электрофорез.

В дополнение к вышеупомянутым требованиям биохимику необходимы и методы, позволяющие разделять смеси, состоящие из малых количеств органических веществ. Важнейший из них – хроматография, в основе которой лежит феномен адсорбции. Разделение компонентов смеси проводят при этом либо на бумаге, либо путем адсорбции на сорбенте, которым заполняют колонки (длинные стеклянные трубки), с последующей постепенной элюцией (вымыванием) каждого из компонентов.

Разделение методом электрофореза зависит от знака и числа зарядов ионизированных молекул. Электрофорез проводят на бумаге или на каком-нибудь инертном (неактивном) носителе, таком, как крахмал, целлюлоза или каучук.

Высокочувствительный и эффективный метод разделения – газовая хроматография. Им пользуются в тех случаях, когда подлежащие разделению вещества находятся в газообразном состоянии или могут быть в него переведены.

Выделение ферментов.

Последнее место в описываемом ряду – животное, орган, тканевой срез, гомогенат и фракция клеточных органелл – занимает фермент, способный катализировать определенную химическую реакцию. Выделение ферментов в очищенном виде – важный раздел в изучении метаболизма.

Сочетание перечисленных методов позволило проследить главные метаболические пути у большей части организмов (в том числе у человека), установить, где именно эти различные процессы протекают, и выяснить последовательные этапы главных метаболических путей. К настоящему времени известны тысячи отдельных биохимических реакций, изучены участвующие в них ферменты.

Клеточный метаболизм.

Живая клетка – это высокоорганизованная система. В ней имеются различные структуры, а также ферменты, способные их разрушить. Содержатся в ней и крупные макромолекулы, которые могут распадаться на более мелкие компоненты в результате гидролиза (расщепления под действием воды). В клетке обычно много калия и очень мало натрия, хотя клетка существует в среде, где натрия много, а калия относительно мало, и клеточная мембрана легко проницаема для обоих ионов. Следовательно, клетка – это химическая система, весьма далекая от равновесия. Равновесие наступает только в процессе посмертного автолиза (самопереваривания под действием собственных ферментов).

Потребность в энергии.

Чтобы удержать систему в состоянии, далеком от химического равновесия, требуется производить работу, а для этого необходима энергия. Получение этой энергии и выполнение этой работы – непременное условие для того, чтобы клетка оставалась в своем стационарном (нормальном) состоянии, далеком от равновесия. Одновременно в ней выполняется и иная работа, связанная со взаимодействием со средой, например: в мышечных клетках – сокращение; в нервных клетках – проведение нервного импульса; в клетках почек – образование мочи, значительно отличающейся по своему составу от плазмы крови; в специализированных клетках желудочно-кишечного тракта – синтез и выделение пищеварительных ферментов; в клетках эндокринных желез – секреция гормонов; в клетках светляков – свечение; в клетках некоторых рыб – генерирование электрических разрядов и т.д.

Источники энергии.

В любом из перечисленных выше примеров непосредственным источником энергии, которую клетка использует для производства работы, служит энергия, заключенная в структуре аденозинтрифосфата (АТФ). В силу особенностей своей структуры это соединение богато энергией, и разрыв связей между его фосфатными группами может происходить таким образом, что высвобождающаяся энергия используется для производства работы. Однако энергия не может стать доступной для клетки при простом гидролитическом разрыве фосфатных связей АТФ: в этом случае она расходуется впустую, выделяясь в виде тепла. Процесс должен состоять из двух последовательных этапов, в каждом из которых участвует промежуточный продукт, обозначенный здесь X–Ф (в приведенных уравнениях X и Y означают два разных органических вещества; Ф – фосфат; АДФ – аденозиндифосфат):

Поскольку практически для любого проявления жизнедеятельности клеток необходим АТФ, неудивительно, что метаболическая активность живых клеток направлена в первую очередь на синтез АТФ. Этой цели служат различные сложные последовательности реакций, в которых используется потенциальная химическая энергия, заключенная в молекулах углеводов и жиров (липидов).

МЕТАБОЛИЗМ УГЛЕВОДОВ И ЛИПИДОВ

Синтез АТФ.

В ходе 11 последовательных реакций, необходимых для того, чтобы завершилось это превращение, образуется ряд промежуточных продуктов, представляющих собой эфиры фосфорной кислоты (фосфаты). Их фосфатная группа переносится на аденозиндифосфат (АДФ) с образованием АТФ. Чистый выход АТФ составляет 2 молекулы АТФ на каждую молекулу глюкозы, расщепленную в процессе брожения. Аналогичные процессы происходят во всех живых клетках; поскольку они поставляют необходимую для жизнедеятельности энергию, их иногда (не вполне корректно) называют анаэробным дыханием клеток.

У млекопитающих, в том числе у человека, такой процесс называется гликолизом и его конечным продуктом является молочная кислота, а не спирт и CO 2 . Вся последовательность реакций гликолиза, за исключением двух последних этапов, полностью идентична процессу, протекающему в дрожжевых клетках.

Перенос электронов.

В каждой митохондрии имеется механизм, посредством которого восстановленный НАД (НАДЧ Н, где Н – водород), образовавшийся в цикле трикарбоновых кислот, передает свою пару электронов кислороду. Перенос, однако, не происходит напрямую. Электроны как бы передаются «из рук в руки» и, лишь пройдя цепь переносчиков, присоединяются к кислороду. Эта «цепь переноса электронов» состоит из следующих компонентов:

НАДНЧ Н ® Флавинадениндинклеотид ® Кофермент Q ®

® Цитохром b ® Цитохром c ® Цитохром a ® O 2

Все компоненты этой системы, находящиеся в митохондриях, фиксированы в пространстве и сцеплены друг с другом. Такое их состояние облегчает перенос электронов.

В состав НАД входит никотиновая кислота (витамин ниацин), а в состав флавинадениндинуклеотида – рибофлавин (витамин B 2). Кофермент Q представляет собой высокомолекулярный хинон, синтезируемый в печени, а цитохромы – это три разных белка, каждый из которых, подобно гемоглобину, содержит гемогруппу.

В цепи переноса электронов на каждую пару электронов, перенесенную от НАДЧ Н на O 2 , синтезируется 3 молекулы АТФ. Поскольку от каждой молекулы глюкозы отщепляются и передаются молекулам НАД 12 пар электронов, в общей сложности на каждую молекулу глюкозы образуется 3ґ 12 = 36 молекул АТФ. Этот процесс образования АТФ в ходе окисления называется окислительным фосфорилированием.

Липиды как источник энергии.

Жирные кислоты могут использоваться в качестве источника энергии приблизительно так же, как и углеводы. Окисление жирных кислот протекает путем последовательного отщепления от молекулы жирной кислоты двууглеродного фрагмента с образованием ацетилкофермента A (ацетил-КоА) и одновременной передачей двух пар электронов в цепь переноса электронов. Образовавшийся ацетил-КоА – нормальный компонент цикла трикарбоновых кислот, и в дальнейшем его судьба не отличается от судьбы ацетил-КоА, поставляемого углеводным обменом. Таким образом, механизмы синтеза АТФ при окислении как жирных кислот, так и метаболитов глюкозы практически одинаковы.

Если организм животного получает энергию почти целиком за счет одного только окисления жирных кислот, а это бывает, например, при голодании или при сахарном диабете, то скорость образования ацетил-КоА превышает скорость его окисления в цикле трикарбоновых кислот. В этом случае лишние молекулы ацетил-КоА реагируют друг с другом, в результате чего образуются в конечном счете ацетоуксусная и b -гидроксимасляная кислоты. Их накопление является причиной патологического состояния, т.н. кетоза (одного из видов ацидоза), который при тяжелом диабете может вызвать кому и смерть.

Запасание энергии.

Животные питаются нерегулярно, и их организму нужно как-то запасать заключенную в пище энергию, источником которой являются поглощенные животным углеводы и жиры. Жирные кислоты могут запасаться в виде нейтральных жиров либо в печени, либо в жировой ткани. Углеводы, поступая в большом количестве, в желудочно-кишечном тракте гидролизуются до глюкозы или иных сахаров, которые затем в печени превращаются в ту же глюкозу. Здесь из глюкозы синтезируется гигантский полимер гликоген путем присоединения друг к другу остатков глюкозы с отщеплением молекул воды (число остатков глюкозы в молекулах гликогена доходит до 30 000). Когда возникает потребность в энергии, гликоген вновь распадается до глюкозы в реакции, продуктом которой является глюкозофосфат. Этот глюкозофосфат направляется на путь гликолиза – процесса, составляющего часть пути окисления глюкозы. В печени глюкозофосфат может также подвергнуться гидролизу, и образующаяся глюкоза поступает в кровоток и доставляется кровью к клеткам в разных частях тела.

Синтез липидов из углеводов.

Если количество углеводов, поглощенных с пищей за один прием, больше того, какое может быть запасено в виде гликогена, то избыток углеводов превращается в жиры. Начальная последовательность реакций совпадает при этом с обычным окислительным путем, т.е. сначала из глюкозы образуется ацетил-КоА, но далее этот ацетил-КоА используется в цитоплазме клетки для синтеза длинноцепочечных жирных кислот. Процесс синтеза можно описать как обращение обычного процесса окисления жирных клеток. Затем жирные кислоты запасаются в виде нейтральных жиров (триглицеридов), отлагающихся в разных частях тела. Когда требуется энергия, нейтральные жиры подвергаются гидролизу и жирные кислоты поступают в кровь. Здесь они адсорбируются молекулами плазменных белков (альбуминов и глобулинов) и затем поглощаются клетками самых разных типов. Механизмов, способных осуществлять синтез глюкозы из жирных кислот, у животных нет, но у растений такие механизмы имеются.

Метаболизм липидов.

Липиды попадают в организм главным образом в форме триглицеридов жирных кислот. В кишечнике под действием ферментов поджелудочной железы они подвергаются гидролизу, продукты которого всасываются клетками стенки кишечника. Здесь из них вновь синтезируются нейтральные жиры, которые через лимфатическую систему поступают в кровь и либо транспортируются в печень, либо отлагаются в жировой ткани. Выше уже указывалось, что жирные кислоты могут также синтезироваться заново из углеводных предшественников. Следует отметить, что, хотя в клетках млекопитающих может происходить включение одной двойной связи в молекулы длинноцепочечных жирных кислот (между С–9 и С–10), включать вторую и третью двойную связь эти клетки неспособны. Поскольку жирные кислоты с двумя и тремя двойными связями играют важную роль в метаболизме млекопитающих, они в сущности являются витаминами. Поэтому линолевую (C 18:2) и линоленовую (C 18:3) кислоты называют незаменимыми жирными кислотами. В то же время в клетках млекопитающих в линоленовую кислоту может включаться четвертая двойная связь и путем удлинения углеродной цепи может образоваться арахидоновая кислота (C 20:4), также необходимый участник метаболических процессов.

В процессе синтеза липидов остатки жирных кислот, связанные с коферментом А (ацил-КоА), переносятся на глицерофосфат – эфир фосфорной кислоты и глицерина. В результате образуется фосфатидная кислота – соединение, в котором одна гидроксильная группа глицерина этерифицирована фосфорной кислотой, а две группы – жирными кислотами. При образовании нейтральных жиров фосфорная кислота удаляется путем гидролиза, и ее место занимает третья жирная кислота в результате реакции с ацил-КоА. Кофермент А образуется из пантотеновой кислоты (одного из витаминов). В его молекуле имеется сульфгидрильная (– SH) группа, способная реагировать с кислотами с образованием тиоэфиров. При образовании фосфолипидов фосфатидная кислота реагирует непосредственно с активированным производным одного из азотистых оснований, таких, как холин, этаноламин или серин.

За исключением витамина D, все встречающиеся в организме животных стероиды (производные сложных спиртов) легко синтезируются самим организмом. Сюда относятся холестерин (холестерол), желчные кислоты, мужские и женские половые гормоны и гормоны надпочечников. В каждом случае исходным материалом для синтеза служит ацетил-КоА: из ацетильных групп путем многократно повторяющейся конденсации строится углеродный скелет синтезируемого соединения.

МЕТАБОЛИЗМ БЕЛКОВ

Синтез аминокислот.

Растения и большинство микроорганизмов могут жить и расти в среде, в которой для их питания имеются только минеральные вещества, диоксид углерода и вода. Это значит, что все обнаруживаемые в них органические вещества эти организмы синтезируют сами. Встречающиеся во всех живых клетках белки построены из 21 вида аминокислот, соединенных в различной последовательности. Аминокислоты синтезируются живыми организмами. В каждом случае ряд химических реакций приводит к образованию a -кетокислоты. Одна такая a -кетокислота, а именно a -кетоглутаровая (обычный компонент цикла трикарбоновых кислот), участвует в связывании азота по следующему уравнению:

a -Кетоглутаровая кислота + NH 3 + НАДЧ Н ®

® Глутаминовая кислота + НАД.

Азот глутаминовой кислоты может быть затем передан любой из других a -кетокислот с образованием соответствующей аминокислоты.

Организм человека и большинства других животных сохранил способность синтезировать все аминокислоты за исключением девяти т.н. незаменимых аминокислот. Поскольку кетокислоты, соответствующие этим девяти, не синтезируются, незаменимые аминокислоты должны поступать с пищей.

Синтез белков.

Аминокислоты нужны для биосинтеза белка. Процесс биосинтеза протекает обычно следующим образом. В цитоплазме клетки каждая аминокислота «активируется» в реакции с АТФ, а затем присоединяется к концевой группе молекулы рибонуклеиновой кислоты, специфичной именно для данной аминокислоты. Эта сложная молекула связывается с небольшим тельцем, т.н. рибосомой, в положении, определяемом более длинной молекулой рибонуклеиновой кислоты, прикрепленной к рибосоме. После того как все эти сложные молекулы соответствующим образом выстроились, связи между исходной аминокислотой и рибонуклеиновой кислотой разрываются и возникают связи между соседними аминокислотами – синтезируется специфичный белок. Процесс биосинтеза поставляет белки не только для роста организма или для секреции в среду. Все белки живых клеток со временем претерпевают распад до составляющих их аминокислот, и для поддержания жизни клетки должны синтезироваться вновь.

Синтез других азотсодержащих соединений.

В организме млекопитающих аминокислоты используются не только для биосинтеза белков, но и как исходный материал для синтеза многих азотсодержащих соединений. Аминокислота тирозин является предшественником гормонов адреналина и норадреналина. Простейшая аминокислота глицин служит исходным материалом для биосинтеза пуринов, входящих в состав нуклеиновых кислот, и порфиринов, входящих в состав цитохромов и гемоглобина. Аспарагиновая кислота – предшественник пиримидинов нуклеиновых кислот. Метильная группа метионина передается ряду других соединений в ходе биосинтеза креатина, холина и саркозина. При биосинтезе креатина от одного соединения к другому передается также и гуанидиновая группировка аргинина. Триптофан служит предшественником никотиновой кислоты, а из валина в растениях синтезируется такой витамин, как пантотеновая кислота. Все это лишь отдельные примеры использования аминокислот в процессах биосинтеза.

Азот, поглощаемый микроорганизмами и высшими растениями в виде иона аммония, расходуется почти целиком на образование аминокислот, из которых затем синтезируются многие азотсодержащие соединения живых клеток. Избыточных количеств азота ни растения, ни микроорганизмы не поглощают. В отличие от них, у животных количество поглощенного азота зависит от содержащихся в пище белков. Весь азот, поступивший в организм в виде аминокислот и не израсходованный в процессах биосинтеза, довольно быстро выводится из организма с мочой. Происходит это следующим образом. В печени неиспользованные аминокислоты передают свой азот a -кетоглутаровой кислоте с образованием глутаминовой кислоты, которая дезаминируется, высвобождая аммиак. Далее азот аммиака может либо на время запасаться путем синтеза глутамина, либо сразу же использоваться для синтеза мочевины, протекающего в печени.

У глутамина есть и другая роль. Он может подвергаться гидролизу в почках с высвобождением аммиака, который поступает в мочу в обмен на ионы натрия. Этот процесс крайне важен как средство поддержания кислотно-щелочного равновесия в организме животного. Почти весь аммиак, происходящий из аминокислот и, возможно, из других источников, превращается в печени в мочевину, так что свободного аммиака в крови обычно почти нет. Однако при некоторых условиях довольно значительные количества аммиака содержит моча. Этот аммиак образуется в почках из глутамина и переходит в мочу в обмен на ионы натрия, которые таким образом реадсорбируются и задерживаются в организме. Этот процесс усиливается при развитии ацидоза – состояния, при котором организм нуждается в дополнительных количествах катионов натрия для связывания избытка ионов бикарбоната в крови.

Избыточные количества пиримидинов тоже распадаются в печени через ряд реакций, в которых высвобождается аммиак. Что касается пуринов, то их избыток подвергается окислению с образованием мочевой кислоты, выделяющейся с мочой у человека и других приматов, но не у остальных млекопитающих. У птиц отсутствует механизм синтеза мочевины, и именно мочевая кислота, а не мочевина, является у них конечным продуктом обмена всех азотсодержащих соединений.

Нуклеиновые кислоты.

Структура и синтез этих азотсодержащих соединений подробно описаны в статье НУКЛЕИНОВЫЕ КИСЛОТЫ.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ О МЕТАБОЛИЗМЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Можно сформулировать некоторые общие понятия, или «правила», касающиеся метаболизма. Приведенные ниже несколько главных «правил» позволяют лучше понять, как протекает и регулируется метаболизм.

1. Метаболические пути необратимы. Распад никогда не идет по пути, который являлся бы простым обращением реакций синтеза. В нем участвуют другие ферменты и другие промежуточные продукты. Нередко противоположно направленные процессы протекают в разных отсеках клетки. Так, жирные кислоты синтезируются в цитоплазме при участии одного набора ферментов, а окисляются в митохондриях при участии совсем другого набора.

2. Ферментов в живых клетках достаточно для того, чтобы все известные метаболические реакции могли протекать гораздо быстрее, чем это обычно наблюдается в организме. Следовательно, в клетках существуют какие-то регуляторные механизмы. Открыты разные типы таких механизмов.

а) Фактором, ограничивающим скорость метаболических превращений данного вещества, может быть поступление этого вещества в клетку; именно на этот процесс в таком случае и направлена регуляция. Роль инсулина, например, связана с тем, что он, по-видимому, облегчает проникновение глюкозы во все клетки, глюкоза же подвергается превращениям с той скоростью, с какой она поступает. Сходным образом проникновение железа и кальция из кишечника в кровь зависит от процессов, скорость которых регулируется.

б) Вещества далеко не всегда могут свободно переходить из одного клеточного отсека в другой; есть данные, что внутриклеточный перенос регулируется некоторыми стероидными гормонами.

в) Выявлено два типа сервомеханизмов «отрицательной обратной связи».

У бактерий были обнаружены примеры того, что присутствие продукта какой-нибудь последовательности реакций, например аминокислоты, подавляет биосинтез одного из ферментов, необходимых для образования этой аминокислоты.

В каждом случае фермент, биосинтез которого оказывается затронутым, был ответствен за первый «определяющий» этап (на схеме реакция 4) метаболического пути, ведущего к синтезу данной аминокислоты.

Второй механизм хорошо изучен у млекопитающих. Это простое ингибирование конечным продуктом (в нашем случае – аминокислотой) фермента, ответственного за первый «определяющий» этап метаболического пути.

Еще один тип регулирования посредством обратной связи действует в тех случаях, когда окисление промежуточных продуктов цикла трикарбоновых кислот сопряжено с образованием АТФ из АДФ и фосфата в процессе окислительного фосфорилирования. Если весь имеющийся в клетке запас фосфата и (или) АДФ уже исчерпан, то окисление приостанавливается и может возобновиться лишь после того, как этот запас вновь станет достаточным. Таким образом, окисление, смысл которого в том, чтобы поставлять полезную энергию в форме АТФ, происходит только тогда, когда возможен синтез АТФ.

3. В биосинтетических процессах участвует сравнительно небольшое число строительных блоков, каждый из которых используется для синтеза многих соединений. Среди них можно назвать ацетилкофермент А, глицерофосфат, глицин, карбамилфосфат, поставляющий карбамильную (H 2 N–CO–) группу, производные фолиевой кислоты, служащие источником гидроксиметильной и формильной групп, S-аденозилметионин – источник метильных групп, глутаминовую и аспарагиновую кислоты, поставляющие аминогруппы, и наконец, глутамин – источник амидных групп. Из этого относительно небольшого числа компонентов строятся все те разнообразные соединения, которые мы находим в живых организмах.

4. Простые органические соединения редко участвуют в метаболических реакциях непосредственно. Обычно они должны быть сначала «активированы» путем присоединения к одному из ряда соединений, универсально используемых в метаболизме. Глюкоза, например, может подвергнуться окислению лишь после того, как она будет этерифицирована фосфорной кислотой, для прочих же своих превращений она должна быть этерифицирована уридиндифосфатом. Жирные кислоты не могут быть вовлечены в метаболические превращения прежде, чем они образуют эфиры с коферментом А. Каждый из этих активаторов либо родствен одному из нуклеотидов, входящих в состав рибонуклеиновой кислоты, либо образуется из какого-нибудь витамина. Легко понять в связи с этим, почему витамины требуются в таких небольших количествах. Они расходуются на образование «коферментов», а каждая молекула кофермента на протяжении жизни организма используется многократно, в отличие от основных питательных веществ (например, глюкозы), каждая молекула которых используется только один раз.

В заключение следует сказать, что термин «метаболизм», означавший ранее нечто не более сложное, чем просто использование углеводов и жиров в организме, теперь применяется для обозначения тысяч ферментативных реакций, вся совокупность которых может быть представлена как огромная сеть метаболических путей, многократно пересекающихся (из-за наличия общих промежуточных продуктов) и управляемых очень тонкими регуляторными механизмами.

МЕТАБОЛИЗМ МИНЕРАЛЬНЫХ ВЕЩЕСТВ

Относительное содержание.

Различные элементы, встречающиеся в живых организмах, перечислены ниже в убывающем порядке в зависимости от их относительного содержания: 1) кислород, углерод, водород и азот; 2) кальций, фосфор, калий и сера; 3) натрий, хлор, магний и железо; 4) марганец, медь, молибден, селен, йод и цинк; 5) алюминий, фтор, кремний и литий; 6) бром, мышьяк, свинец и, возможно, некоторые другие.

Кислород, углерод, водород и азот – это те элементы, из которых построены мягкие ткани тела. Они входят в состав таких соединений, как углеводы, липиды, белки, вода, диоксид углерода и аммиак. Элементы, перечисленные в пп. 2 и 3, находятся в организме обычно в виде одного или нескольких неорганических соединений, а элементы пп. 4, 5 и 6 присутствуют только в следовых количествах и потому их называют микроэлементами.

Распределение в организме.

Кальций.

Кальций присутствует главным образом в костной ткани и в зубах, преимущественно в виде фосфата и в небольших количествах в виде карбоната и фторида. Поступающий с пищей кальций всасывается в основном в верхних отделах кишечника, имеющих слабокислую реакцию. Этому всасыванию (у человека здесь всасывается всего 20–30% кальция пищи) способствует витамин D. Под действием витамина D клетки кишечника вырабатывают особый белок, который связывает кальций и облегчает его перенос через стенку кишечника в кровь. На всасывание влияет также присутствие некоторых других веществ, в особенности фосфата и оксалата, которые в малых количествах способствуют всасыванию, а в больших, наоборот, подавляют его.

В крови около половины кальция связано с белком, остальное составляют ионы кальция. Соотношение ионизированной и неионизированной форм зависит от общей концентрации кальция в крови, а также от содержания белка и фосфата и концентрации водородных ионов (рН крови). Доля неионизированного кальция, на которую влияет уровень белка, позволяет косвенным образом судить о качестве питания и об эффективности работы печени, в которой идет синтез плазменных белков.

На количество ионизированного кальция влияют, с одной стороны, витамин D и факторы, воздействующие на всасывание, а с другой – паратиреоидный гормон и, возможно, также витамин D, поскольку оба эти вещества регулируют как скорость отложения кальция в костной ткани, так и его мобилизацию, т.е. вымывание из костей. Избыток паратиреоидного гормона стимулирует выход кальция из костной ткани, что приводит к повышению его концентрации в плазме. Изменяя скорости всасывания и экскреции кальция и фосфата, а также скорости образования костной ткани и ее разрушения, эти механизмы строго контролируют концентрацию кальция и фосфата в сыворотке крови. Ионы кальция играют регулирующую роль во многих физиологических процессах, в том числе в нервных реакциях, мышечном сокращении, свертывании крови. Выведение кальция из организма происходит в норме в основном (на 2/3) через желчь и кишечник и в меньшей степени (1/3) – через почки.

Фосфор.

Метаболизм фосфора – одного из главных компонентов костной ткани и зубов – во многом зависит от тех же факторов, что и метаболизм кальция. Фосфор в виде фосфата присутствует в организме также в сотнях различных физиологически важных органических эфиров. Паратиреоидный гормон стимулирует выведение фосфора с мочой и выход его из костной ткани; тем самым он регулирует концентрацию фосфора в плазме крови.

Натрий.

Натрий – главный катион внеклеточной жидкости – вместе с белком, хлоридом и бикарбонатом играет важнейшую роль в регулировании осмотического давления и pH (концентрации водородных ионов) крови. В клетках, напротив, содержится очень мало натрия, так как они обладают механизмом для выведения ионов натрия и удержания ионов калия. Весь натрий, превышающий потребности организма, очень быстро выводится через почки.

Поскольку во всех процессах выделения натрий теряется, он должен постоянно поступать в организм с пищей. При ацидозе, когда необходимо, чтобы из организма выводились большие количества анионов (например, хлорида или ацетоацетата), почки предотвращают чрезмерную потерю натрия благодаря образованию аммиака из глутамина. Выведение натрия через почки регулируется гормоном коры надпочечников альдостероном. Под действием этого гормона в кровь возвращается достаточно натрия для поддержания нормального осмотического давления и нормального объема внеклеточной жидкости.

Суточная потребность в хлористом натрии составляет 5–10 г. Эта величина возрастает при поглощении больших количеств жидкости, когда усиливается потоотделение и выделяется больше мочи.

Калий.

В отличие от натрия, калий содержится в клетках в больших количествах, но во внеклеточной жидкости его мало. Главная функция калия – регулирование внутриклеточного осмотического давления и поддержание кислотно-щелочного равновесия. Он также играет важную роль в проведении нервного импульса и во многих ферментных системах, в том числе и в тех, которые участвуют в мышечном сокращении. Калий широко распространен в природе, и его много в любой пище, так что спонтанно калиевая недостаточность возникнуть не может. В плазме концентрация калия регулируется альдостероном, стимулирующим его экскрецию с мочой.

Сера.

С пищей сера поступает в организм главным образом в составе двух аминокислот – цистина и метионина. На конечных этапах метаболизма этих аминокислот сера высвобождается и в результате окисления переводится в неорганическую форму. В составе цистина и метионина сера присутствует в структурных белках. Важную роль играет также сульфгидрильная (–SH) группа цистеина, от которой зависит активность многих ферментов.

Большая часть серы выводится с мочой в виде сульфата. Небольшое количество экскретируемого сульфата обычно связано с органическими соединениями типа фенолов.

Магний.

Метаболизм магния сходен с метаболизмом кальция, и в виде комплекса с фосфатом этот элемент тоже входит в состав костной ткани. Магний присутствует во всех живых клетках, где он функционирует как необходимый компонент многих ферментных систем; эта его роль была убедительно продемонстрирована на примере углеводного обмена в мышцах. Магний, как и калий, широко распространен, и вероятность возникновения его недостаточности очень мала.

Железо.

Железо входит в состав гемоглобина и других гемопротеинов, а именно миоглобина (мышечного гемоглобина), цитохромов (дыхательных ферментов) и каталазы, а также в состав некоторых ферментов, не содержащих гемогруппы. Всасывается железо в верхних отделах кишечника, причем это единственный элемент, всасывающийся только тогда, когда его запас в организме полностью исчерпан. В плазме железо транспортируется в соединении с белком (трансферрином). Через почки железо не выводится; избыток его накапливается в печени в соединении с особым белком (ферритином).

Микроэлементы.

У каждого микроэлемента, присутствующего в организме, своя особая функция, связанная с тем, что он стимулирует действие того или иного фермента или как-либо иначе на него влияет. Цинк необходим для кристаллизации инсулина; кроме того, он является компонентом карбоангидразы (фермента, участвующего в транспорте диоксида углерода) и некоторых других ферментов. Молибден и медь – тоже необходимые компоненты различных ферментов. Иод требуется для синтеза трииодтиронина, гормона щитовидной железы. Фтор (входящий в состав зубной эмали) способствует предотвращению кариеса.

ИСПОЛЬЗОВАНИЕ МЕТАБОЛИТОВ

Углеводы.

Всасывание.

Моносахариды, или простые сахара, высвобождающиеся при переваривании углеводов пищи, переходят из кишечника в кровоток в результате процесса, называемого всасыванием. Механизм всасывания представляет собой сочетание простой диффузии и химической реакции (активного всасывания). Одна из гипотез, касающихся природы химической фазы процесса, предполагает, что в этой фазе моносахариды соединяются с фосфорной кислотой в реакции, катализируемой ферментом из группы киназ, после чего проникают в кровеносные сосуды и здесь высвобождаются в результате ферментативного дефосфорилирования (разрыва фосфатной связи), катализируемого одной из фосфатаз. Именно активным всасыванием объясняется то, что разные моносахариды всасываются с разной скоростью и что углеводы всасываются даже тогда, когда уровень сахара в крови выше, чем в кишечнике, т.е. в условиях, когда естественно было бы ожидать их перемещения в обратном направлении – из крови в кишечник.

Механизмы гомеостаза.

Поступающие в кровоток моносахариды повышают уровень сахара в крови. При голодании концентрация глюкозы в крови колеблется обычно от 70 до 100 мг на 100 мл крови. Этот уровень поддерживается с помощью механизмов, называемых механизмами гомеостаза (самостабилизации). Как только уровень сахара в крови в результате всасывания из кишечника повышается, в действие вступают процессы, выводящие сахар из крови, так что уровень его колеблется не слишком сильно.

Подобно глюкозе, все прочие моносахариды поступают из кровотока в печень, где превращаются в глюкозу. Теперь они неотличимы как от глюкозы, которая всосалась, так и от той, что уже была в организме, и подвергаются тем же метаболическим превращениям. Один из механизмов гомеостаза углеводов, функционирующий в печени, – это гликогенез, посредством которого глюкоза переходит из крови в клетки, где превращается в гликоген. Гликоген хранится в печени до тех пор, пока не произойдет снижение уровня сахара в крови: в этой ситуации гомеостатический механизм вызовет распад накопленного гликогена до глюкозы, которая вновь поступит в кровь.

Превращения и использование.

Поскольку кровь поставляет глюкозу во все ткани тела и все ткани используют ее для получения энергии, уровень глюкозы в крови снижается главным образом за счет ее использования.

В мышцах глюкоза крови превращается в гликоген. Однако мышечный гликоген не может быть использован для получения глюкозы, которая перешла бы в кровь. В нем заключен запас энергии, и скорость его использования зависит от мышечной активности. В мышечной ткани содержатся два соединения с большим запасом легко доступной энергии в форме богатых энергией фосфатных связей – креатинфосфат и аденозинтрифосфат (АТФ). При отщеплении от этих соединений их фосфатных групп высвобождается энергия для мышечного сокращения. Чтобы мышца вновь могла сокращаться, эти соединения должны быть восстановлены в своей исходной форме. Для этого требуется энергия, которую поставляет окисление продуктов распада гликогена. При мышечном сокращении гликоген превращается в глюкозофосфат, а затем – через ряд реакций – во фруктозодифосфат. Фруктозодифосфат распадается на два трехуглеродных соединения, из которых после ряда этапов образуется сначала пировиноградная кислота, а в конечном итоге – молочная кислота, как об этом уже говорилось при описании метаболизма углеводов. Это превращение гликогена в молочную кислоту, сопровождающееся высвобождением энергии, может происходить в отсутствие кислорода.

При недостатке кислорода молочная кислота накапливается в мышцах, диффундирует в кровоток и поступает в печень, где из нее вновь образуется гликоген. Если кислорода достаточно, то молочная кислота в мышцах не накапливается. Вместо этого она, как это описано выше, полностью окисляется через цикл трикарбоновых кислот до диоксида углерода и воды с образованием АТФ, который может быть использован для сокращения.

Метаболизм углеводов в нервной ткани и эритроцитах отличается от метаболизма в мышцах тем, что гликоген здесь не участвует. Однако и здесь промежуточными продуктами являются пировиноградная и молочная кислоты, образующиеся при расщеплении глюкозофосфата.

Глюкоза используется не только в клеточном дыхании, но и во многих других процессах: синтезе лактозы (молочного сахара), образовании жиров, а также особых сахаров, входящих в состав полисахаридов соединительной ткани и ряда других тканей.

Гликоген печени, синтезируемый при всасывании углеводов в кишечнике, служит самым доступным источником глюкозы, когда всасывание отсутствует. Если этот источник оказывается исчерпанным, в печени начинается процесс глюконеогенеза. Глюкоза образуется при этом из некоторых аминокислот (из 100 г белка образуется 58 г глюкозы) и нескольких других неуглеводных соединений, в том числе из глицериновых остатков нейтральных жиров.

Некоторую, хотя и не столь важную, роль в метаболизме углеводов играют почки. Они выводят из организма избыток глюкозы, когда ее концентрация в крови слишком высока; при меньших концентрациях глюкоза практически не выводится.

В регулировании метаболизма углеводов участвует несколько гормонов, в том числе гормоны поджелудочной железы, передней доли гипофиза и коры надпочечников.

Гормон поджелудочной железы инсулин снижает концентрацию глюкозы в крови и повышает ее концентрацию в клетках. По-видимому, он стимулирует также и запасание гликогена в печени. Кортикостерон, гормон коры надпочечников, и адреналин, вырабатываемый мозговым веществом надпочечников, воздействуют на метаболизм углеводов, стимулируя распад гликогена (главным образом в мышцах и печени) и синтез глюкозы (в печени).

Липиды.

Всасывание.

В кишечнике после переваривания жиров остаются главным образом свободные жирные кислоты с небольшой примесью холестерина и лецитина и следами жирорастворимых витаминов. Все эти вещества очень тонко диспергированы благодаря эмульгирующему и солюбилизирующему действию солей желчных кислот. Солюбилизирующее действие обычно связывают с образованием нестойких химических соединений между жирными кислотами и солями желчных кислот. Эти комплексы проникают в клетки эпителия тонкого кишечника и здесь распадаются на жирные кислоты и соли желчных кислот. Последние переносятся в печень и вновь секретируются с желчью, а жирные кислоты вступают в соединение с глицерином или холестерином. Образовавшиеся реконструированные жиры поступают в лимфатические сосуды брыжейки в форме млечного сока, т.н. «хилуса». Из сосудов брыжейки хилус по лимфатической системе через грудной проток поступает в кровеносную систему.

После переваривания пищи содержание липидов в крови возрастает приблизительно от 500 мг (уровень при голодании) до 1000 мг на 100 мл плазмы. Присутствующие в крови липиды представляют собой смесь жирных кислот, нейтральных жиров, фосфолипидов (лецитина и кефалина), холестерина и эфиров холестерина.

Распределение.

Кровь доставляет липиды в разные ткани тела и прежде всего в печень. Печень обладает способностью модифицировать поступающие в нее жирные кислоты. Это особенно выражено у видов, запасающих жиры с высоким содержанием насыщенных или, наоборот, ненасыщенных жирных кислот: в печени этих животных соотношение насыщенных и ненасыщенных кислот изменяется таким образом, что отлагающийся жир по своему составу соответствует жиру, свойственному данному организму.

Жиры в печени либо используются для получения энергии, либо переходят в кровь и доставляются ею в разные ткани. Здесь они могут включаться в структурные элементы тканей, но большая их часть отлагается в жировых депо, где они хранятся до тех пор, пока не возникнет потребность в энергии; тогда они снова переносятся в печень и подвергаются здесь окислению.

Метаболизм липидов, как и углеводов, регулируется гомеостатически. Механизмы гомеостаза, воздействующие на липидный и углеводный обмен, видимо, тесно связаны, поскольку при замедлении метаболизма углеводов усиливается метаболизм липидов, и наоборот.

Превращения и использование.

Четырехуглеродные кислоты – ацетоуксусная (продукт конденсации двух ацетатных единиц) и b -гидроксимасляная – и трехуглеродное соединение ацетон, образующийся при отщеплении одного атома углерода от ацетоуксусной кислоты, известны под общим названием кетоновых (ацетоновых) тел. В норме кетоновые тела присутствуют в крови в небольших количествах. Избыточное их образование при тяжелом диабете ведет к повышению их содержания в крови (кетонемия) и в моче (кетонурия) – это состояние обозначают термином «кетоз».

Белки.

Всасывание.

При переваривании белков пищеварительными ферментами образуется смесь из аминокислот и небольших пептидов, содержащих от двух до десяти остатков аминокислот. Эти продукты всасываются слизистой кишечника, и здесь гидролиз завершается – пептиды также распадаются до аминокислот. Поступившие в кровь аминокислоты смешиваются с находящимися здесь такими же аминокислотами. В крови содержится смесь из аминокислот, поступивших из кишечника, образовавшихся при распаде тканевых белков и синтезированных организмом заново.

Синтез.

В тканях непрерывно идет распад белков и их новообразование. Содержащиеся в крови аминокислоты избирательно поглощаются тканями как исходный материал для построения белков, а из тканей в кровь поступают другие аминокислоты. Синтезу и распаду подвергаются не только структурные белки, но и белки плазмы крови, а также белковые гормоны и ферменты.

Во взрослом организме аминокислоты или белки практически не запасаются, поэтому удаление аминокислот из крови происходит с такой же скоростью, как и их поступление из тканей в кровь. В растущем организме формируются новые ткани, и на этот процесс расходуется больше аминокислот, чем поступает в кровь за счет распада тканевых белков.

Печень участвует в метаболизме белков самым активным образом. Здесь синтезируются белки плазмы крови – альбумины и глобулины – а также собственные ферменты печени. Так, при потере плазменных белков содержание альбумина в плазме восстанавливается – за счет интенсивного синтеза – довольно быстро. Аминокислоты в печени используются не только для образования белков, но подвергаются также расщеплению, в ходе которого извлекается заключенная в них энергия.

Превращения и использование.

Если аминокислоты используются в качестве источника энергии, то отщепляемая от них аминогруппа (–NH 2) направляется на образование мочевины, а не содержащий азота остаток молекулы окисляется приблизительно так же, как глюкоза или жирные кислоты.

Так называемый «орнитиновый цикл» описывает, как происходит превращение аммиака в мочевину. В этом цикле аминогруппа, отщепившаяся от аминокислоты в форме аммиака, присоединяется вместе с диоксидом углерода к молекуле орнитина с образованием цитруллина. Цитруллин присоединяет второй атом азота, на этот раз от аспарагиновой кислоты, и превращается в аргинин. Далее аргинин подвергается гидролизу с образованием мочевины и орнитина. Орнитин может теперь вновь вступить в цикл, а мочевина выводится из организма через почки как один из конечных продуктов метаболизма. ФЕРМЕНТЫ; ЖИРЫ И МАСЛА; НУКЛЕИНОВЫЕ КИСЛОТЫ; БЕЛКИ; ВИТАМИНЫ.

Литература:

Ленинджер А. Основы биохимии , тт. 1–3. М., 1985
Страйер Л. Биохимия , тт. 1–3. М., 1985
Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека , тт. 1–2. М., 1993
Албертс Б., Брей Д., Льюс Д. и др. Молекулярная биология клетки , тт. 1–3. М., 1994



Вопросы в начале параграфа.

Вопрос 1. Что такое обмен веществ?

Обмен веществ - это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, развитие, процессы жизнедеятельности, воспроизведение потомства, активное взаимодействие с окружающей средой.

Вопрос 2. Где происходит пластический и энергетический обмен?

Под пластическим обменом понимают такие процессы, в ходе которых в клетках создаются новые соединения и новые структуры, характерные для данного организма. Под энергетическим обменом понимают такие превращения энергии, в ходе которых в результате биологического окисления выделяется энергия, необходимая для жизнедеятельности клеток, тканей и всего организма в целом.

Пластический и энергетический обмен происходит в клетках.

Вопрос 3. Какова роль белков, жиров и углеводов в обмене веществ и энергии?

Белки, жиры и углеводы – главные источники энергии для организма.

Белки входят в состав ядер, цитоплазмы и мембран клеток. Они являются ферментами, входят в состав антител. Белки принимают участие в свертывании крови (фибриноген) и в транспортировке газов (гемоглобин). Белки входят в состав костей. Белки способны к биологическому окислению с выделением энергии, которая может быть использована организмом.

Из жиров образуются некоторые гормоны и биологически активные вещества. Их производные участвуют в работе синапсов - особых образований, через которые передаются возбуждающие или тормозящие сигналы от одной нервной клетки к другой или от нервной клетки к исполнительному органу.

В организме углеводы прежде всего являются источником энергии. В частности, головной мозг может функционировать только в том случае, если к нему в качестве энергетического материала поступает глюкоза. Распадаясь на углекислый газ и воду, она освобождает энергию молекулярных связей, которая используется на многие нужды, в том числе и на передачу нервных импульсов.

Вопрос 4. Почему необходима вода, макро- и микроэлементы для организма человека?

Вода - универсальный растворитель. Все жизненные процессы, все биохимические реакции происходят в водной среде. Внутренняя среда человека содержит до 90% воды. Вода в организме либо химически связана с другими соединениями, либо содержит в себе растворенные минеральные соли и органические вещества.

Минеральные соли необходимы для поддержания кислотно-щелочного равновесия в клетках тела и во внутренней среде организма.

Вопросы в конце параграфа.

Вопрос 1. Почему обмен веществ считают основным свойством живой природы?

Обмен веществ - обязательное условие жизни любого организма. Обмен веществ обеспечивает взаимодействие живого организма с окружающей его средой, процессы жизнедеятельности, рост, развитие.

Вопрос 2. Что относят к подготовительной, основной и заключительной стадиям обмена?

К подготовительной стадии обмена веществ относят расщепление веществ, поступивших в организм в процессе пищеварения, и транспортировку их и кислорода к клеткам.

К основной - процессы преобразования веществ внутри клеток (синтез необходимых организму веществ и биологическое окисление с целью получения энергии).

К заключительной - вывод из клеток и организма продуктов биологического окисления веществ (углекислого газа, аммиака, воды, соединений фосфора, натрия, хлора).

Вопрос 3. Какие функции в организме выполняют белки?

Функции белков:

Структурно-пластическая. Белки - основной строительный материал клетки.

Каталитическая. Биологические катализаторы - ферменты - представлены веществами белковой природы.

Защитная. Белки входят в состав антител, принимают участие в свертывании крови, связывают токсины и яды.

Транспортная. Белок крови гемоглобин переносит кислород и углекислый газ.

Энергетическая. Белки способны к биологическому окислению с выделением энергии.

Вопрос 4. Какую роль играют жиры?

Функции жиров:

Структурно-пластическая. Жиры входят в состав клеточных мембран и других структур.

Регуляторная. Из жиров образуются некоторые гормоны и биологически активные вещества, их производные участвуют в работе синапсов.

Защитная. Жиры предохраняют органы от сотрясений.

Теплоизоляционная. Жиры - хорошие теплоизоляторы.

Энергетическая. При окислении жиров выделяется больше энергии, чем при окислении углеводов и белков.

Запасающая. Часть жиров откладывается в запас. Эти запасы используются при недостатке питания.

Вопрос 5. Каковы функции углеводов?

Функции углеводов:

Энергетическая. Углеводы являются основным источником энергии в организме.

Структурно-пластическая.

Защитная. Углеводы взаимодействуют в печени со многими ядовитыми соединениями, переводя их в безвредные вещества.

Вопрос 6. Как в организме происходит обмен белков, жиров и углеводов?

Белки в пищеварительной системе расщепляются до аминокислот, которые всасываются непосредственно в кровь в тонком кишечнике и поступают в клетки тканей. Здесь формируются белки, свойственные данному организму.

Основными продуктами распада белков являются углекислый газ, вода и аммиак. Углекислый газ удаляется из организма через легкие, вода - через почки и кожу (и небольшое количество - через легкие), аммиак частично выводится через кожу и легкие, но большая его часть обезвреживается в печени до мочевины и удаляется через почки и потовые железы.

Углеводы расщепляются в пищеварительной системе до моносахаридов (глюкоза) и в таком виде всасываются в кровь и доставляются тканям. Излишки глюкозы депонируются в печени в виде гликогена.

Продуктами распада углеводов являются углекислый газ и вода, которая выводится из организма соответственно через легкие (углекислый газ и вода), кожу (вода и углекислый газ) и почки (вода).

Жиры расщепляются в пищеварительной системе до глицерина и жирных кислот, которые поступают в эпителиальные клетки ворсинок тонкого кишечника, где формируются жиры, характерные для данного организма. Готовые жиры поступают в лимфу, а затем - в кровь и разносятся клеткам тканей. Избыток жиров откладывается в запас в подкожной жировой клетчатке и других местах.

Продукты распада жиров - углекислый газ и вода - удаляются из организма через легкие, кожу и почки.

Вопрос 7. Какие функции выполняет в организме вода?

Внутренняя среда организма жидкая, содержит до 90% воды. Все биохимические процессы в организме происходят в водной среде. Транспорт питательных веществ и кислорода осуществляется в жидкой (водной) среде. Продукты распада тоже выносятся водой.

Вопрос 8. Почему концентрация солей во внутренней среде организма и клетках должна поддерживаться на определенном уровне?

Если концентрация солей в тканевой жидкости и крови будет меньше, чем в клетках, вода будет поступать в клетки. Они начнут разбухать, их нормальная работа будет нарушена. Если же концентрация солей в тканевой жидкости и крови будет больше, чем в клетках, вода будет выходить из клеток, и они могут погибнуть от обезвоживания.

Вопрос 9. Какие элементы относятся к макроэлементам, а какие - к микроэлементам?

К макроэлементам относят кальций, калий, натрий, фосфор, хлор.

К микроэлементам - железо, кобальт, цинк, фтор, йод и др.

Общее понятие об обмене веществ и энергии Организм человека, как и все живые организмы, существует как открытая энергетическая система. Это значит, что организм постоянно теряет вещество в виде достаточно простых химических соединений. Одновременно с этим происходит выведение энергии из организма. Но организм - это устойчивая энергетическая система, поэтому потеря вещества и энергии восполняется постоянным их поглощением из окружающей среды. Таким образом, через организм человека постоянно идет поток вещества и заключенной в нем энергии. Этот непрерывный поток является одним из важнейших свойств живых организмов и называется обмен веществ и энергии, или метаболизм.

Вещество, поступающее в организм, заключает в себе химическую энергию (энергия внутримолекулярных химических связей). Эта энергия преобразуется в организме в химическую энергию других соединений, а также в тепловую, механическую и электрическую. Электрической энергии в организме вырабатывается немного, но она важна для деятельности нервной и мышечной систем.

Обмен веществ – это единый процесс, осуществляющийся на уровне целостного организма, он складывается из метаболических процессов, происходящих в каждой отдельной клетке. Сутью метаболизма является все многообразие превращений веществ в организме, которые происходят либо с затратой, либо с освобождением энергии. Поэтому общий процесс метаболизма имеет две стороны, неразрывно связанные между собой:

Анаболизм (ассимиляция, пластический обмен) - это совокупность реакций синтеза, протекающих в клетках. При этом из более простых веществ синтезируются более сложные вещества. Реакции анаболизма идут с затратой энергии. Основным источником энергии для реакций анаболизма является АТФ. Примером таких реакций является биосинтез белка, протекающий во всех клетках. Исходными веществами для анаболизма являются питательные вещества, поступающие в организм с пищей и образующиеся в результате процесса пищеварения. В результате анаболических реакций происходит постоянное самообновление, рост и развитие организма. Кроме этого, реакции анаболизма являются поставщиками органических соединений для процессов катаболизма.

Катаболизм (диссимиляция, энергетический обмен) - это совокупность реакций расщепления и распада более сложных органических веществ до более простых, вплоть до углекислого газа и воды. Эти реакции идут с освобождением энергии, примерно половина которой превращается в тепловую и тратится на поддержание температуры тела, а вторая половина энергии запасается в виде макроэргических связей в молекулах АТФ, которая используется в реакциях синтеза.

Основными органическими веществами, из которых состоит организм человека, являются белки, углеводы, жиры, нуклеиновые кислоты, при этом одни вещества могут превращаться в другие, например, углеводы – в жиры и наоборот, белки могут превращаться в жиры и углеводы. Неорганические вещества организма - это вода и минеральные соли. Полноценная, сбалансированная пища должна содержать органические вещества в достаточном количестве и качестве, а также в ее составе должны быть необходимые минеральные соли и вода и витамины. Насчитывается около 60 пищевых веществ, которые требуют сбалансированности.

Однообразное питание, приводящее к исключению отдельных компонентов, вызывает нарушение обмена веществ. Принято выделять белковый, углеводный, жировой и водно-солевой обмен. Энергетическую ценность пищи измеряют в килокалориях(ккал). Суточная потребность человека в энергии составляет в среднем около 3 100 к. Дж. Эта величина зависит от пола, возраста, физической и эмоциональной активности. Особенно высоки затраты энергии в пересчете на массу тела у детей 1 – 5 лет в связи с высокой активностью обменных процессов.

Белковый обмен Среди всех органических соединений, входящих в состав организма человека, наибольшее количество приходится на белки. Функции белков в организме очень многообразны: структурная (входят в состав мембран клеток, образуют цитоскелет); каталитическая (белки-ферменты); регуляторная (белки - гормоны); транспортная (альбумины и глобулины плазмы крови, гемоглобин эритроцитов); защитная (белки - антитела, белки свертывающей системы крови); рецепторная, сигнальная (белки мембран рецепторных окончаний); сократительная (актин и миозин мышечных клеток, белок тубулин жгутиков и ресничек); энергетическая (освобождение энергии при расщеплении белков);

Белки имеют особое значение в сбалансированном питании, так как они в организме человека не синтезируются из других органических соединений и должны поступать в организм в составе пищи. С химической точки зрения белки - это полимерные соединения, состоящие из аминокислот. В пищеварительном тракте человека белки пищи расщепляются до аминокислот, из которых затем в клетках тела синтезируются собственные белки. В составе белков человека 22 различные аминокислоты. Все аминокислоты делятся на заменимые и незаменимые.

Заменимые могут образовываться в организме человека из других аминокислот. Незаменимые аминокислоты в организме человека синтезироваться не могут, и поэтому должны поступать в составе пищи. В организме взрослого человека могут синтезироваться 14 аминокислот. Незаменимых аминокислот у детей 10, а у взрослых 8 (аргинин, валин, лейцин, изолейцин и др.). Недостаток или отсутствие какой-либо одной незаменимой аминокислоты приводит к замедлению и даже остановке роста и развития. В связи с этим существует понятие биологическая ценность белков.

Белки, содержащие все незаменимые аминокислоты и в достаточном количестве, называются полноценными. Это животные белки (белки мяса, рыбы, яиц, молока). Белки, содержащие не все незаменимые аминокислоты, называются неполноценными. Это белки растительного происхождения (кроме белков картофеля).

Белки пищи под действием протеолитических ферментов, входящих в состав пищеварительных соков, расщепляются до аминокислот и всасываются через стенки кишечника в кровь. С током крови аминокислоты поступают в клети организма и участвуют в дальнейших превращениях (биосинтез белка, преобразование в другие аминокислоты и др.).

Полное окисление 1 грамма белков до углекислого газа, воды и мочевины сопровождается освобождением 17, 6 к. Дж (4, 1 ккал) энергии. Белки практически не откладываются в запас. При белковом голодании в клетках происходит использование белков мембран самих клеток, что приводит к тяжелым нарушениям обменных процессов. Суточная потребность взрослого человека в белках составляет 90 150 граммов (в зависимости от физических нагрузок).

Избыток белков в пище может превращаться в гликоген и жиры, но в основном избыточные аминокислоты окисляются до углекислого газа, воды и аммиака. Аммиак токсичен, поэтому в печени он превращается в нетоксичную мочевину и выводится в составе мочи. В организме взрослого человека в норме количество синтезируемых белков равно количеству распадающегося белка. У детей синтез белков преобладает на их распадом, а у старых людей преобладает процесс распада над синтезом.

В зрелом возрасте у здорового человека существует азотное равновесие, т. е. количество азота, полученного с белками пищи равно количеству выделяемого азота. В молодом, растущем организме идет накопление белковой массы, поэтому азотный баланс будет положительный, т. е. количество поступающего азота превышает количество выводимого из организма. В престарелом возрасте из-за преобладающего распада белков азотный баланс отрицателен, т. е. количество азота поступившего в организм меньше количества азота, выведенного из организма.

Болезни, связанные с отсутствием белка. Уменьшается содержание белка в сыворотке крови, развивается гипопротеинемия. Вслед за белками крови распадаются белки печени, мышц, кожи. Позже распадаются белки мышц сердца и головного мозга. Ранний показатель-изменение мочевины в моче.

Углеводный обмен В организм человека углеводы поступают в составе пищи в виде моносахаридов (глюкоза, фруктоза, галактоза), дисахаридов (сахароза, мальтоза, лактоза) и полисахаридов (крахмал, гликоген). До 60% энергообмена человека зависит от превращений углеводов. Окисление углеводов происходит гораздо быстрее и легче по сравнению с окислением жиров и белков. В организме человека углеводы выполняют ряд важных функций:

энергетическая (при полном окислении одного грамма глюкозы освобождается 17, 6 к. Дж энергии); рецепторная (образуют углеводные рецепторы гликокаликса клеток); защитная (входят в состав слизей); запасающая (в мышцах и печени откладываются в запас в виде гликогена);

В пищеварительном тракте человека полисахариды и дисахариды расщепляются под действие амилолитических ферментов до глюкозы и других моносахаров. В крови человека содержание глюкозы очень постоянно, от 0, 08 до 0, 12%. В организме избыток углеводов из крови под действием гормона инсулина откладывается в запас в виде полисахарида гликогена в печени и в мышцах. При недостатке инсулина развивается тяжелое заболевание – сахарный диабет.

Запасы гликогена в организме взрослого человека составляют около 400 граммов. Эти запасы легко мобилизуются на энергетические нужды: под действием гормона глюкагона и некоторых ферментов гликоген расщепляется до глюкозы. Суточная потребность человека в углеводах 400 - 600 граммов. Богата углеводами растительная пища. При недостатке углеводов в пище они могут синтезироваться из жиров и белков. Избыток углеводов в пище превращается в процессе метаболизма в жиры.

Жировой обмен Жиры (липиды) составляют 10 -20% массы тела. Большинство молекул жира человека – это сложные эфиры трехатомного спирта глицерола и высших карбоновых (жирных) кислот. Липиды могут быть твердыми (жиры) и жидкими (масла). Жиры выполняют ряд важных функций:

структурная (жиры – фосфолипиды являются основой строения клеточных мембран); энергетическая (полное окисление 1 г жира до углекислого газа и воды освобождает 38, 9 к. Дж (9, 3 ккал) энергии); защитная (теплоизоляция и гидроизоляция от внешних воздействий низкой температуры и агрессивных водных растворов, сдавливающего действия механического давления на определенные участки тела); амортизационная (жировые капсулы некоторых внутренних органов (почек и др.); источник эндогенной воды (1 г жира при окислении освобождает 1, 1 г воды, которая может использоваться организмом на метаболические нужды; животные степей и пустынь могут длительно обходиться без питья за счет окисления запасного жира); регуляторная (некоторые гормоны являются производными жиров, например прогестерон, андростерон и др.); являются растворителями для жирорастворимых витаминов.

В пищеварительном тракте жиры под действием липолитических ферментов расщепляются до глицерола и жирных кислот. Эти вещества в клетках слизистой тонкого кишечника преобразуются в собственные жиры человека и всасываются в лимфу. Избыток жиров, поступающих в пищей, откладывается в запас на поверхности внутренних органов и в подкожной жировой клетчатке. В составе жиров человека имеются насыщенные и ненасыщенные жирные кислоты. Ненасыщенные в организме человека не синтезируются, поэтому должны поступать с пищей.

Источником ненасыщенных жирных кислот являются растительные масла. Суточная потребность взрослого человека в жирах - 80 -100 г. , при этом около 30% их количества должны составлять растительные масла как источник ненасыщенных жирных кислот. При недостатке жиров в пище они могут синтезироваться из белков и углеводов. Чрезмерное употребление жиров животного происхождения способствует образованию холестерина, который откладывается на внутренних стенках артерий и приводит к утолщению их стенок и способствует развитию гипертонии.

Водный и солевой обмен Организм человека содержит около 65% воды. Особенно большое количество воды содержат клетки нервной ткани (нейроны), клетки селезенки и печени – до 85%. В эмбриональных клетках количество воды может быть до 95%, а в старых клетках ее содержание снижается до 60%. На каждый килограмм веса тела взрослого человека приходится около 700 г воды, при этом 500 г внутриклеточной и 200 г внеклеточной воды. Суточная потеря воды с мочой, при дыхании, через кожу, с калом у взрослого человека составляет около 2, 5 литров, поэтому суточная потребность в воде равна этому количеству.

Восполнение потерь воды осуществляется за счет пищи потребления жидкости. Около 300 г воды ежесуточно образуется внутри организма за счет окисления белков, жиров и углеводов. Вода как химическое вещество обладает рядом уникальных физико-химических свойств, на чем основаны функции, которые она выполняет в организме:

является универсальным растворителем (все биохимические реакции в клетках происходят только в растворенном состоянии); определяет упругость (тургор) клеток и тканей; является основой жидких транспортных систем (движение цитоплазмы, крови, лимфы) и пищеварительных соков; является основой внутренней среды (кровь, лимфа; тканевая, плевральная, спинномозговая, суставная жидкости); является реагентом в биохимических реакциях; участвует в сохранении, распределении и перераспределении тепла в организме и в терморегуляции; Без воды человек может прожить не более 5 суток.

Минеральные соли необходимы для нормального протекания обменных процессов и функционирования всех систем органов, нормального роста и развития. Макроэлементами, количество которых составляет десятки и сотни граммов в организме, являются натрий, калий, кальций, фосфор и магний. Организму человека требуется большое разнообразие микроэлементов, количество которых исчисляется миллиграммами. Как правило, потребность в минеральных солях покрывается продуктами пищи, за исключением поваренной соли и йода, которым бедны воды и почвы некоторых регионов, в том числе и территория Алтайского края. Каждый минеральный элемент выполняет свою важную роль и не может быть заменен никаким другим элементом.

Функции некоторых минеральных элементов в организме человека и их суточная потребность Название элемента Функции в организме Суточная потребность, г Натрий (хлорид натрия) Ионы находятся в тканевой жидкости на наружной поверхности клеточной мембраны; обеспечивает процессы возбудимости клеток 10 - 12 Калий Ионы находятся на внутренней поверхности клеточной мембраны и обеспечивают процессы возбудимости клеток 2 - 3

Фосфор Входит в состав межклеточного вещества костной ткани; является необходимым компонентом фосфорсодержащих органических соединений (АТФ, ДНК, РНК) 1, 5 – 2, 0 Кальций Входит в состав межклеточного вещества костной ткани; ионы участвуют в процессах мышечного сокращения и свертывания крови 0, 6 – 0, 8 Магний Входит в состав межклеточного вещества костной ткани; 0, 3 Железо Входит в состав гемоглобина и некоторых окислительных ферментов 0, 001 – 0, 003 Хлор (хлорид натрия) Входит в состав желудочного сока (соляная кислота) 10 - 12

Сера Входит в состав некоторых аминокислот 0, 8 – 1, 0 Йод Входит в состав гормонов щитовидной железы 0, 00003 Цинк Входит в состав ферментов, катализирующих образование инсулина и половых гормонов Фтор Входит в состав твердых тканей зубов и костей Бром Входит в состав нервной ткани, обеспечивая процессы возбуждения и торможения Медь Входит в состав некоторых ферментов 0, 001 Кобальт Входит в состав молекулы витамина В 12 , активизирует активность некоторых дыхательных ферментов

С окружающей средой и адаптацию к изменениям внешних условий. Основу обмена веществ составляют взаимосвязанные процессы анаболизма и катаболизма, направленные на непрерывное обновление живого материала и обеспечение его необходимой энергией. Анаболические и катаболические процессы осуществляются путем последовательных химических реакций с участием ферментов. Для каждого вида организмов характерен особый, генетически закрепленный тип обмена веществ, зависящий от условий его существования. Интенсивность и направленность обмена веществ в клетке обеспечивается путем сложной регуляции синтеза и активности ферментов, а также в результате изменения проницаемости биологических мембран. В организме человека и животных имеет место гормональная регуляция обмена веществ, координируемая центральной нервной системой. Любое заболевание сопровождается нарушениями обмена веществ; генетически обусловленные нарушения обмена веществ служат причиной многих наследственных болезней.

Большой Энциклопедический словарь . 2000 .

Синонимы :

Смотреть что такое "ОБМЕН ВЕЩЕСТВ" в других словарях:

    Метаболизм, совокупность протекающих в живых организмах химич. превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Благодаря О. в. происходит расщепление и синтез молекул,… … Биологический энциклопедический словарь

    Современная энциклопедия

    Обмен веществ - (метаболизм), совокупность химических превращений в организмах, обеспечивающих их рост, жизнедеятельность и воспроизведение. Основу обмена веществ составляют взаимосвязанные процессы синтеза (анаболизма) и распада (катаболизма), направленные на… … Иллюстрированный энциклопедический словарь

    См. Метаболизм. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989. Обмен веществ превращения веществ (и энергии) в организмах, обеспечивающие их жизнеспособнос … Экологический словарь

    Метаболизм Словарь русских синонимов. обмен веществ сущ., кол во синонимов: 1 метаболизм (3) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    ОБМЕН, а, м. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    См. метаболизм. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) … Словарь микробиологии

    обмен веществ - — Тематики биотехнологии EN metabolism … Справочник технического переводчика

    Печень важнейший орган метаболизма у животных (фотография печени крысы) Метаболизм (от греч. μεταβολή, «превращение, изменение»), обмен веществ полный процесс превращения химических веществ в организме, обеспечивающих его рост, развитие,… … Википедия

    Или метаболизм, лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме. Ф. Энгельс,… … Большая советская энциклопедия

Книги

  • Обмен веществ и превращение энергии в растениях. В 2-х частях. Часть 2 , Фаминцын А.С.. Настоящее издание посвящено физиологии растений. Книга состоит из двух частей. В первой части с общей биологической точки зрения рассмотрены процессы питания растений. Во второй части…