Электрический ток в разных. Как читать схемы. Напряжение и сила тока. Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение

Есть вещи, которые хочется, что называется «развидеть» - термин вполне устоявшийся и понятный.

Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем...


Да, вот так все просто. Буква К - это катод, буква А - это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите - ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше - ток течет "А ткуда" (от Анода) и "К уда" (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток - направленное движение заряженных частиц - это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы - атомы или молекулы, в растворах и плазме - ионы, в полупроводниках - «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» - интуитивно - это там где чего-то «больше», больше в данном случае зарядов (еще раз - не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее - батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус - эдакий «жирный минус» - как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Без электричества невозможно представить жизнь современного человека. Вольты, Амперы, Ватты – эти слова звучат в разговоре об устройствах, которые работают от электричества. Но что это такое электрический ток и каковы условия его существования? Об этом мы расскажем далее, предоставив краткое объяснение для начинающих электриков.

Определение

Электрическим током является направленное движение носителей зарядов – это стандартная формулировка из учебника физики. В свою очередь носителями заряда называются определенные частицы вещества. Ими могут быть:

  • Электроны – отрицательные носители заряда.
  • Ионы – положительные носители заряда.

Но откуда берутся носители заряда? Для ответа на этот вопрос нужно вспомнить базовые знания о строении вещества. Всё что нас окружает – вещество, оно состоит из молекул, мельчайших его частиц. Молекулы состоят из атомов. Атом состоит из ядра, вокруг которого движутся электроны на заданных орбитах. Молекулы также хаотично движутся. Движение и структура каждой из этих частиц зависят от самого вещества и влияния на него окружающей среды, например температуры, напряжения и прочего.

Ионом называют атом, у которого изменилось соотношение электронов и протонов. Если изначально атом нейтрален, то ионы в свою очередь делят на:

  • Анионы – положительный ион атома, потерявшего электроны.
  • Катионы – это атом с «лишними» электронами, присоединившиеся к атому.

Единица измерения тока – Ампер, согласно он вычисляется по формуле:

где U – напряжение, [В], а R – сопротивление, [Ом].

Или прямопропорционален количеству заряда, перенесенному за единицу времени:

где Q – заряд, [Кл], t – время, [с].

Условия существования электрического тока

Что такое электрический ток мы разобрались, теперь давайте поговорим о том, как обеспечить его протекание. Для протекания электрического тока необходимо выполнение двух условий:

  1. Наличие свободных носителей заряда.
  2. Электрическое поле.

Первое условие существования и протекания электричества зависит от вещества, в котором протекает (или не протекает) ток, а также его состояния. Второе условие также выполнимо: для существования электрического поля обязательно наличие разных потенциалов, между которыми находится среда, в которой будут протекать носители заряда.

Напомним: Напряжение, ЭДС – это разность потенциалов. Отсюда следует, что для выполнения условий существования тока – наличия электрического поля и электрического тока, нужно напряжение. Это могут быть обкладки заряженного конденсатора, гальванический элемент, ЭДС возникшее под действием магнитного поля (генератор).

Как он возникает, мы разобрались, давайте поговорим о том, куда он направлен. Ток, в основном, в привычном для нас использовании, движется в проводниках (электропроводка в квартире, лампочки накаливания) или в полупроводниках (светодиоды, процессор вашего смартфона и другая электроника), реже в газах (люминесцентные лампы).

Так вот основными носителями заряда в большинстве случаев являются электроны, они движутся от минуса (точки с отрицательным потенциалом) к плюсу (точке с положительным потенциалом, подробнее об этом вы узнаете ниже).

Но интересен тот факт, что за направление движения тока было принято движение положительных зарядов – от плюса к минусу. Хотя фактически всё происходит наоборот. Дело в том, что решение о направлении тока было принято до изучения его природы, а также до того, как было определено за счет чего протекает и существует ток.

Электрический ток в разных средах

Мы уже упоминали о том, что в различных средах электрический ток может различаться по типу носителей заряда. Среды можно разделить по характеру проводимости (по убыванию проводимости):

  1. Проводник (металлы).
  2. Полупроводник (кремний, германий, арсенид галия и пр).
  3. Диэлектрик (вакуум, воздух, дистиллированная вода).

В металлах

В металлах есть свободные носители зарядов, их иногда называют «электрическим газом». Откуда берутся свободные носители зарядов? Дело в том, что металл, как и любое вещество, состоит из атомов. Атомы, так или иначе движутся или колеблются. Чем выше температура металла, тем сильнее это движение. При этом сами атомы в общем виде остаются на своих местах, собственно и формируя структуру металла.

В электронных оболочках атома обычно есть несколько электронов, у которых связь с ядром достаточно слабая. Под воздействием температур, химических реакций и взаимодействия примесей, которые в любом случае находятся в металле, электроны отрываются от своих атомов, образуются положительно заряженные ионы. Оторвавшиеся электроны называются свободными и двигаются хаотично.

Если на них будет воздействовать электрическое поле, например, если подключить к куску металла батарейку – хаотичное движение электронов станет упорядоченным. Электроны от точки, в которую подключен отрицательный потенциал (катод гальванического элемента, например), начнут двигаться к точке с положительным потенциалом.

В полупроводниках

Полупроводниками являются такие материалы, в которых в нормальном состоянии нет свободных носителей заряда. Они находятся в так называемой запрещенной зоне. Но если приложить внешние силы, такие как электрическое поле, тепло, различные излучения (световое, радиационное и пр.), они преодолевают запрещенную зону и переходят в свободную зону или зону проводимости. Электроны отрываются от своих атомов и становятся свободными, образуя ионы – положительные носители зарядов.

Положительные носители в полупроводниках называются дырками.

Если просто передать энергию полупроводнику, к примеру нагреть, начнется хаотичное движение носителей заряда. Но если речь идет о полупроводниковых элементах, типа диода или транзистора, то на противоположных концах кристалла (на них нанесен металлизированный слой и припаяны выводы) возникнет ЭДС, но это не относится к теме сегодняшней статьи.

Если приложить источник ЭДС к полупроводнику, то носители заряда также перейдут в зону проводимости, а также начнется их направленное движение – дырки пойдут в сторону с меньшим электрическим потенциалом, а электроны – в сторону с большим.

В вакууме и газе

Вакуумом называют среду с полным (идеальный случай) отсутствием газов или минимизированным (в реальности) его количеством. Так как в вакууме нет никакого вещества, то и носителям заряда браться не откуда. Однако протекание тока в вакууме положило начало электронике и целой эпохе электронных элементов – электровакуумных ламп. Их использовали в первой половине прошлого века, а в 50-х годах они начали постепенно уступать месту транзисторам (в зависимости от конкретной сферы электроники).

Допустим, что у нас есть сосуд, из которого откачали весь газ, т.е. в нём полный вакуум. В сосуд помещено два электрода, назовем их анод и катод. Если мы подключим к катоду отрицательный потенциал источника ЭДС, а к аноду положительный – ничего не произойдет и ток протекать не будет. Но если мы начнем нагревать катод – ток начнет протекать. Этот процесс называется термоэлектронной эмиссией – испускание электронов с нагретой поверхности электрона.

На рисунке изображен процесс протекания тока в вакуумной лампе. В вакуумных лампах катод нагревают расположенной рядом нитью накала на рис (Н), типа такой, как в осветительной лампе.

При этом, если изменить полярность питания – на анод подать минус, а на катод подать плюс – ток протекать не будет. Это докажет, что ток в вакууме протекает за счет движения электронов от КАТОДА к АНОДУ.

Газ также как и любое вещество состоит из молекул и атомов, это значит, что если газ будет находиться под воздействием электрического поля, то при определенной его силе (напряжение ионизации) электроны оторвутся от атома, тогда будут выполнены оба условия протекания электрического тока – поле и свободные носители.

Как уже было сказано, этот процесс называется ионизацией. Она может происходить не только от приложенного напряжения, но и при нагреве газа, рентгеновском излучении, под воздействием ультрафиолета и прочего.

Ток через воздух потечет, даже если между электродами установить горелку.

Протекание тока в инертных газах сопровождается люминесценцией газа, это явление активно используется в люминесцентных лампах. Протекание электрического тока в газовой среде называется газовым разрядом.

В жидкости

Допустим, что у нас есть сосуд с водой в который помещены два электрода, к которым подключен источник питания. Если вода дистиллированная, то есть чистая и не содержит примесей, то она является диэлектриком. Но если мы добавим в воду немного соли, серной кислоты или любого другого вещества, образуется электролит и через него начнет протекать ток.

Электролит – вещество, которое проводит электрический ток вследствие диссоциации на ионы.

Если в воду добавить медный купорос, то на одном из электродов (катоде) осядет слой меди – это называется электролиз, что доказывает что электрический ток в жидкости осуществляется за счет движения ионов – положительных и отрицательных носителей заряда.

Электролиз – физико-химический процесс, который заключается в выделении на электродах компонентов составляющих электролит.

Таким образом происходит омеднение, золочения и покрытие другими металлами.

Заключение

Подведем итоги, для протекания электрического тока нужны свободные носители зарядов:

  • электроны в проводниках (металлы) и вакууме;
  • электроны и дырки в полупроводниках;
  • ионы (анионы и катионы) в жидкости и газах.

Для того, чтобы движение этих носителей стало упорядоченны, нужно электрическое поле. Простыми словами — приложить напряжение на концах тела или установить два электрода в среде, где предполагается протекание электрического тока.

Также стоит отметить, что ток определенным образом воздействует на вещество, различают три типа воздействия:

  • тепловое;
  • химическое;
  • физическое.

Полезное

Темы кодификатора ЕГЭ : постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации - энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь - основаны на использовании электрического тока.

Электрический ток - это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно - ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это - пример тока в металлах.

Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы - к положительному.
Это - пример прохождения тока через раствор электролита.

Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд - молния.
Это - пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости .

Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов - есть, перенос заряда в пространстве - присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным .

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника - не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные - наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма - короткой).

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь - придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока . Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока . Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня - получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока . При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным , если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока . В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

(1)

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока :

(2)

где - сила тока, - площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока . Это - скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов . Это - средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа .

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

(3)

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

(4)

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

(5)

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

М/с.

Это порядка одной десятой миллиметра в секунду.

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть - постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода - электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи - для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ - источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника - это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи - как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего - химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника - так называемую ЭДС - мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле - это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где - напряжение на концах проводника, - напряжённость стационарного поля в проводнике, - длина проводника.

Направленное движение заряженных частиц в электрическом поле.

Заряженными частицами могут являться электроны или ионы (заряженные атомы).

Атом, потерявший один или несколько электронов, приобретает положительный заряд. - Анион (положительный ион).
Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. - Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.

В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест - дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE , которая перемещает заряд в направлении вектора этой силы.

На рисунке показано, что вектор силы F - = -qE , действующей на отрицательный заряд -q , направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину. Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:

I = Q/t .

Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m 2:

Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ 1 и φ 2 между этими точками из расчёта:

U = A/Q = φ 1 - φ 2

Электрический ток может быть постоянным или переменным.

Постоянный ток - электрический ток, направление и величина которого не меняются во времени.

Переменный ток - электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.
Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.
Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R :

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток.

В металлических проводниках носителями зарядов являются свободные электроны.
С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.
При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.
Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. - Электролиз.
Анионы - положительные ионы. Перемещаются к отрицательному электроду - катоду.
Катионы - отрицательные ионы. Перемещаются к положительному электроду - аноду.
Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах - плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах - лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению.
Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры.
С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.
При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники - изоляторами.
Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.
При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.
Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.
При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.
Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.
В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного I n и дырочного I p токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др. Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Подключим к пальчиковой батарейке светодиод, и если полярность окажется соблюдена правильно, то он засветится. В каком направлении установится ток? В наше время всем известно, что от плюса к минусу. А внутри батарейки, стало быть, от минуса к плюсу - ток ведь в этой замкнутой электрической цепи постоянный.

За направление тока в цепи принято считать направление движения положительно заряженных частиц, но ведь в металлах то движутся электроны, а они, мы знаем, заряжены отрицательно. Значит в реальности понятие «направление тока» - это условность. Давайте разберемся, почему в то время как электроны текут по цепи от минуса к плюсу, все вокруг говорят, что ток идет от плюса к минусу . Для чего такая несуразность?


Ответ кроется в истории становления электротехники. Когда Франклин разрабатывал свою теорию электричества, он рассматривал его движение подобно движению жидкости, которая как-бы перетекает от одного тела к другому. Где электрической жидкости больше - оттуда она течет в ту сторону, где ее меньше.

Франклин поэтому и назвал тела с избытком электрической жидкости (условно!) положительно электризованными, а тела с недостатком электрической жидкости - отрицательно электризованными. Отсюда и пошло представление о движении . Положительный заряд перетекает, словно через систему сообщающихся сосудов, от одного заряженного тела к другому.

Позже французский исследователь Шарль Дюфе в своих экспериментах с установил, что заряжаются не только натираемые тела, но и натирающие, причем при контакте заряды обеих тел нейтрализуется. Получалось, что есть на самом деле два отдельных вида электрического заряда, которые при взаимодействии друг друга нейтрализуют. Эту теорию двух электричеств развил современник Франклина Роберт Симмер, который на себе убедился в том, что в теории Франклина что-то не до конца правильно.

Шотландский физик Роберт Симмер носил по две пары чулок: утепленные шерстяные и сверху еще вторые шелковые. Когда он снимал с ноги оба чулка сразу, а затем выдергивал один чулок из другого, то наблюдал такую картину: шерстяной и шелковый чулки раздуваются, принимая как бы форму его ноги и резко слипаются друг с другом. При этом чулки из одинакового материла, как шерстяные и шелковые, отталкивались друг от друга.

Если же Симмер держал в одной руке два шелковых, а в другой - два шерстяных чулка, то когда он сближал руки, отталкивание чулков из одинакового материала и притяжение чулков из разного материала приводило к интересному взаимодействию между ними: разнородные чулки словно набрасывались друг на друга и сплетались в клубок.

Наблюдения за поведением собственных чулков привели Роберта Симмера к выводу, что в каждом теле имеется не одна, а две электрические жидкости – положительная и отрицательная, которые содержатся в теле в одинаковых количествах. При натирании двух тел какая-то из них может перейти из одного тела в другое, тогда в одном теле окажется избыток одной из жидкостей, а в другом – ее недостаток. Оба тела станут наэлектризованными противоположными по знаку электричествами.

Тем не менее, электростатические явления успешно можно было объяснить как при помощи гипотезы Франклина, так и при помощи гипотезы двух электричеств Симмера. Эти теории некоторое время конкурировали между собой. Когда же в 1779 году Алессандро Вольта создал свой вольтов столб, после чего был исследован электролиз, ученые пришли к однозначному выводу, что действительно в растворах и жидкостях движутся два противоположных потока носителей заряда - положительные и отрицательные. Дуалистическая теория электрического тока, хотя и не была понятна всем, все же восторжествовала.

Наконец, в 1820 году, выступая перед Парижской академией наук, Ампер предлагает выбрать в качестве основного направления тока одно из направлений движения заряда. Ему было удобно сделать так, поскольку Ампер исследовал взаимодействия токов между собой и токов с магнитами. И чтобы каждый раз во время сообщения не упоминать, что в двух направлениях по одному проводнику движутся два потока противоположного заряда.

Ампер предложил просто принять за направление тока направление движения положительного электричества, и все время говорить о направлении тока, имея ввиду движение положительного заряда . С тех пор предложенное Ампером положение о направлении тока принято повсеместно, и используется до сих пор.


Когда Максвелл разрабатывал свою теорию электромагнетизма, и решил применять правило правого винта для удобства определения направления вектора магнитной индукции, он также придерживался этого положения: направление тока - это направление движения положительного заряда.

Фарадей в свою очередь отмечал, что направление тока условно, это просто удобное средство для ученых, чтобы однозначно определять направление тока. Ленц, вводя свое Правило Ленца (смотрите - ), также оперировал термином «направление тока», имея ввиду движение положительного электричества. Это просто удобно.

И даже после того как Томсон в 1897 году открыл электрон, условность направления тока все равно сохранилась. Даже если в проводнике или в вакууме реально движутся только электроны, все равно за направление тока принимается противоположное направление - от плюса к минусу.


Спустя уже более века с момента открытия электрона, несмотря на представления еще Фарадея об ионах, даже с появлением электронных ламп и транзисторов, хотя и появились трудности в описаниях, все равно привычное положение дел сохраняется. Так просто удобнее оперировать с токами, ориентироваться в их магнитных полях, и никаких реальных трудностей это, похоже, ни у кого не вызывает.