Для каких тел характерны полосатые спектры. Теоретическое введение. различают три вида спектров излучения — линейчатые, полосатые и сплошные. Темы кодификатора ЕГЭ: линейчатые спектры

Часть А. Выберите правильный ответ:

А) Лампа дневного света

Б) Экран телевизора

В) Инфракрасный лазер

Г) Лампа накаливания

А) Для нагретых твердых тел

Б) Для нагретых жидкостей

А) Для нагретых твердых тел

Б) Для нагретых жидкостей

Г) Для нагретых атомарных газов

Часть В . Для каждой

А) Сплошной спектр

Б) Линейчатый спектр

В) Полосатый спектр

Г) Спектры поглощения

Физика 11 Тест « Виды излучения и спектров»

Часть А. Выберите правильный ответ:

А1. Излучение какого тела является тепловым?

А) Лампа дневного света

Б) Экран телевизора

В) Инфракрасный лазер

Г) Лампа накаливания

А2. Для каких тел характерны полосатые спектры поглощения и испускания?

А) Для нагретых твердых тел

Б) Для нагретых жидкостей

В) Для любых перечисленных выше тел

Г) Для нагретых атомарных газов

Д) Для разреженных молекулярных газов

А3. Для каких тел характерны линейчатые спектры поглощения и испускания?

А) Для нагретых твердых тел

Б) Для нагретых жидкостей

В) Для разреженных молекулярных газов

Г) Для нагретых атомарных газов

Д) Для любых перечисленных выше тел

Часть В . Для каждой характеристики выберите соответствующий вид спектра

  1. Спектры получают, пропуская свет от источника, дающего сплошной спектр, через вещество, атомы которого находятся в невозбужденном состоянии
  2. Состоит из отдельных линий разного или одного цвета, имеющих разные расположения
  3. Излучают нагретые твердые и жидкие вещества, газы, нагретые под большим давлением.
  4. Дают вещества, находящиеся в молекулярном состоянии
  5. Испускается газами, парами малой плотности в атомарном состоянии
  6. Состоит из большого числа тесно расположенных линий
  7. Одинаковы для разных веществ, поэтому их нельзя использовать для определения состава вещества
  8. Это совокупность частот, поглощаемых данным веществом. Вещество поглощает те линии спектра, которые и испускает, являясь источником света
  9. Это спектры, содержащие все длины волны определенного диапазона.
  10. Позволяет по спектральным линиям судить о химическом составе источника света

А) Сплошной спектр

1 вариант

1. К какому виду излучения (тепловому или люминесцентному) относятся свечения:

1. раскаленной отливки металла; 2. лампы дневного света;

3. звезд; 4. некоторых глубоководных рыб.

А. 1, 3 – тепловое, 2, 4 – люминесцентные; Б. 1, 2, 3, 4 – только тепловые;

В. 1, 2, 3, 4 и тепловые и люминесцентные; Г. 1, 4 – тепловые, 2, 3 – люминесцентные.

2. Свечение твердых тел, вызванное бомбардировкой их электронами, называется:

А. электролюминесценцией Б. катодолюминесценцией В. тепловым свечением

Г. хемилюминесценцией Д. фотолюминесценцией

3. Тела, состоящие из невзаимодействующих между собой возбужденных молекул, излучают

4. Для каких тел характерны полосатые спектры поглощения и испускания?

В. Для любых перечисленных выше тел Г. Для нагретых атомарных газов

Д. Для разреженных молекулярных газов

5. Непрерывные (сплошные) спектры дают тела, находящиеся

А. только в твердом состоянии при очень больших температурах;

Б. в газообразном молекулярном состоянии, в котором молекулы не связаны или слабо связаны

друг с другом;

В. в газообразном атомарном состоянии, в котором атомы практически не взаимодействуют

друг с другом;

Г. в твердом или жидком состоянии, а также сильно сжатые газы

6. Вещество в газообразном атомарном состоянии дает:

А. непрерывный спектр излучения Б. линейчатый спектр излучения

В. полосатый спектр излучения Г. сплошной спектр поглощения

Д.полосатый спектр поглощения

7. Спектральный анализ позволяет определить:

А. химический состав вещества; Б. скорость движения тела; В. объем тела;

Г. массу тела; Д. температуру тела; Е. давление воздуха.

8 . На рисунке изображены фотографии спектров поглощения Na, H, Ca и неизвестного газа. По

виду спектров можно утверждать, что неизвестный газ содержит в заметном количестве

А. натрий (Na), водород (H), кальций (Ca); Б. водород (H) и кальций (Ca);

В. натрий (Na) и водород (H); Г. натрий (Na) и кальций (Ca

Физика 11 Тест « Виды излучения. Спектры»

2 вариант

1. Излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии

теплового движения атомов (или молекул) излучающего тела, называется:

А. электролюминесценцией Б. фотолюминесценцией В. тепловым излучением

Г. катодолюминесценцией Д. хемилюминесценцией

2. Электролюминесценция – это излучение, возникающее за счет энергии

А. электронов, бомбардирующих поверхность излучающего твердого тела;

Б. электрического поля, которая сообщается электронам, соударяющимся с атомами

излучающегося тела;

В. электромагнитных волн, поглощенных атомами излучающего тела;

Г. выделяющейся при электрическом взаимодействии ионов излучающего тела

3. Возбужденные атомы сильно разряженных газов и ненасыщенных паров, не

взаимодействующие друг с другом, излучают спектры:

А. полосатые; Б. сплошные; В. линейчатые.

4. Твердые тела, состоящие из возбужденных постоянно взаимодействующих молекул и ионов.

излучают спектры:

А. полосатые; Б. сплошные; В. линейчатые.

5. Для каких тел характерны линейчатые спектры поглощения и испускания?

А. Для нагретых твердых тел Б. Для нагретых жидкостей

В. Для разреженных молекулярных газов Г. Для нагретых атомарных газов

Д. Для любых перечисленных выше тел

6. Вещество в газообразном состоянии, если газ состоит из молекул, слабо связанных друг с другом, дает:

А. линейный спектр поглощения Б. непрерывный спектр излучения

В. полосатый спектр излучения Г. линейчатый спектр излучения

Д.непрерывный спектр поглощения

7. Спектральный анализ – это

А. метод определения вида излучения (теплового, люминесцентного и т. п.) по виду спектра;

Б. метод определения химического состава вещества по его спектру;

В. анализ свойства призмы или дифракционной решетки;

Г. определение агрегатного состояния вещества по его спектру

8. На рисунке изображены фотографии спектров излучения H, He, Sr и неизвестного газа. По виду

спектров можно утверждать, что неизвестный газ содержит в заметном количестве

А. водород (H) и гелий (He); Б. водород (H), стронций (Sr) и гелий (He);

В. стронций (Sr) и водород (H); Г. стронций (Sr) и гелий (He)

Вариант 1

Физика. Тест « Виды излучения и спектров»

А) Лампа дневного свет Б) Экран телевизора

А) Для нагретых твердых тел Б) Для нагретых жидкостей

А) Сплошной спектр

Б) Линейчатый спектр

В) Полосатый спектр

Г) Спектры поглощения

Вариант 2

Физика Тест « Виды излучения и спектров»

Часть А.Выберите правильный ответ:

А1. Излучение какого тела является тепловым?

А) Лампа дневного света Б) Экран телевизора

В) Инфракрасный лазер Г) Лампа накаливания

А2. Для каких тел характерны полосатые спектры поглощения и испускания?

А) Для нагретых твердых тел Б) Для нагретых жидкостей

В) Для любых перечисленных выше тел Г) Для нагретых атомарных газов

Д) Для разреженных молекулярных газов

А3. Для каких тел характерны линейчатые спектры поглощения и испускания?

А) Для нагретых твердых тел Б) Для нагретых жидкостей

В) Для разреженных молекулярных газов Г) Для нагретых атомарных газов

Д) Для любых перечисленных выше тел

Часть В. Для каждой характеристики выберите соответствующий вид спектра

    Спектры получают, пропуская свет от источника, дающего сплошной спектр, через вещество, атомы которого находятся в невозбужденном состоянии

    Состоит из отдельных линий разного или одного цвета, имеющих разные расположения

    Излучают нагретые твердые и жидкие вещества, газы, нагретые под большим давлением.

    Дают вещества, находящиеся в молекулярном состоянии

    Испускается газами, парами малой плотности в атомарном состоянии

    Состоит из большого числа тесно расположенных линий

    Одинаковы для разных веществ, поэтому их нельзя использовать для определения состава вещества

    Это совокупность частот, поглощаемых данным веществом. Вещество поглощает те линии спектра, которые и испускает, являясь источником света

    Это спектры, содержащие все длины волны определенного диапазона.

    Позволяет по спектральным линиям судить о химическом составе источника света

А) Сплошной спектр

Б) Линейчатый спектр

В) Полосатый спектр

Г) Спектры поглощения

Темы кодификатора ЕГЭ : линейчатые спектры.

Если пропустить солнечный свет через стеклянную призму или дифракционную решётку, то возникнет хорошо известный вам непрерывный спектр (рис. 1 )(Изображения на рис. 1 , 2 и 3 взяты с сайта www.nanospectrum.ru):

Рис. 1. Непрерывный спектр

Спектр называется непрерывным потому, что в нём присутствуют все длины волн видимого диапазона - от красной границы до фиолетовой. Мы наблюдаем непрерывный спектр в виде сплошной полосы, состоящей из разных цветов.

Непрерывным спектром обладает не только солнечный свет, но и, например, свет электрической лампочки. Вообще, оказывается, что любые твёрдые и жидкие тела (а также весьма плотные газы), нагретые до высокой температуры, дают излучение с непрерывным спектром.

Ситуация качественно меняется, когда мы наблюдаем свечение разреженных газов. Спектр перестаёт быть непрерывным: в нём появляются разрывы, увеличивающиеся по мере разрежения газа. В предельном случае чрезвычайно разреженного атомарного газа спектр становится линейчатым - состоящим из отдельных достаточно тонких линий.

Мы рассмотрим два типа линейчатых спектров: спектр испускания и спектр поглощения.

Спектр испускания

Предположим, что газ состоит из атомов некоторого химического элемента и разрежен настолько, что атомы почти не взаимодействуют друг с другом. Раскладывая в спектр излучение такого газа (нагретого до достаточно высокой температуры), мы увидим примерно следующую картину (рис. 2 ):

Рис. 2. Линейчатый спектр испускания

Этот линейчатый спектр, образованный тонкими изолированными разноцветными линиями, называется спектром испускания .

Любой атомарный разреженный газ излучает свет с линейчатым спектром. Более того, для каждого химического элемента спектр испускания оказывается уникальным, играя роль «удостоверения личности» этого элемента. По набору линий спектра испускания можно однозначно сказать, с каким химическим элементом мы имеем дело.

Поскольку газ разрежен и атомы мало взаимодействуют друг с другом, мы можем заключить, что свет излучают атомы сами по себе . Таким образом, атом характеризуется дискретным, строго определённым набором длин волн излучаемого света . У каждого химического элемента, как мы уже сказали, этот набор свой.

Спектр поглощения

Атомы излучают свет, переходя из возбуждённого состояния в основное. Но вещество может не только излучать, но и поглощать свет. Атом, поглощая свет, совершает обратный процесс - переходит из основного состояния в возбуждённое.

Снова рассмотрим разреженный атомарный газ, но на сей раз в холодном состоянии (при достаточно низкой температуре). Свечения газа мы не увидим; не будучи нагретым, газ не излучает - атомов в возбуждённом состоянии оказывается для этого слишком мало.

Если сквозь наш холодный газ пропустить свет с непрерывным спектром, то можно увидеть что-то вроде этого (рис. 3 ):

Рис. 3. Линейчатый спектр поглощения

На фоне непрерывного спектра падающего света появляются тёмные линии, которые образуют так называемый спектр поглощения . Откуда берутся эти линии?

Под действием падающего света атомы газа переходят в возбуждённое состояние. При этом оказывается, что для возбуждения атомов годятся не любые длины волн, а лишь некоторые, строго определённые для данного сорта газа. Вот именно эти длины волн газ и «забирает себе» из проходящего света.

Более того, газ изымает из непрерывного спектра ровно те самые длины волн, которые излучает сам! Тёмные линии в спектре поглощения газа в точности соответствуют ярким линиям его спектра испускания. На рис. 4 сопоставлены спектры испускания и поглощения разреженных паров натрия (изображение с сайта www.nt.ntnu.no):

Рис. 4. Спектры поглощения и испускания для натрия

Впечатляющее совпадение линий, не правда ли?

Глядя на спектры испускания и поглощения, физики XIX века пришли к выводу, что атом не является неделимой частицей и обладает некоторой внутренней структурой. В самом деле, что-то ведь внутри атома должно обеспечивать механизм излучения и поглощения света!

Кроме того, уникальность атомных спектров говорит о том, что этот механизм различен у атомов разных химических элементов; стало быть, атомы разных химических элементов должны отличаться по своему внутреннему устройству.

Строению атома будет посвящён следующий листок.

Спектральный анализ

Использование линейчатых спектров в качестве уникальных «паспортов» химических элементов лежит в основе спектрального анализа - метода исследования химического состава вещества по его спектру.
Идея спектрального анализа проста: спектр излучения исследуемого вещества сопоставляется с эталонными спектрами химических элементов, после чего делается вывод о присутствии или отсутствии того или иного химического элемента в данном веществе. При определённых условиях методом спектрального анализа можно определить химический состав не только качественно, но и количественно.

В результате наблюдения различных спектров были открыты новые химические элементы.

Первыми из таких элементов были цезий и рубидий; они получили название по цвету линий своего спектра (В спектре цезия наиболее выражены две линии небесно-синего цвета, по-латыни называемого caesius. Рубидий же даёт две характерные линии рубинового цвета).

В 1868 году в спектре Солнца были обнаружены линии, не соответствующие ни одному из известных химических элементов. Новый элемент был назван гелием (от греческого гелиос - солнце). Впоследствии гелий был обнаружен в атмосфере Земли.

Вообще, спектральный анализ излучения Солнца и звёзд показал, что все входящие в их состав входят элементы имеются и на Земле. Таким образом, оказалось, что все объекты Вселенной собраны из одного и того же «набора кирпичиков».